

Quantities, Units and Symbols in Physical Chemistry

Third Edition

Prepared for publication by
E. Richard Cohen Tomislav Cvitas Jeremy G. Frey

Bertil Holmström Kozo Kuchitsu Roberto Marquardt

Ian Mills Franco Pávese Martin Quack

Jürgen Stohner
Herbert L. Strauss Michio Takami
Anders J Thor

The first and second editions were prepared for publication by

> Ian Mills Tomislav Cvitaš

Klaus Homann Nikola Kallay Kozo Kuchitsu

Please cite this document as follows:

E.R. Cohen, T. Cvitas, J.G. Frey, B. Holmström, K. Kuchitsu, R. Marquardt, I. Mills, F. Pavese, M. Quack, J. Stohner, H.L. Strauss, M. Takami, and A.J. Thor, "Quantities, Units and Symbols in Physical Chemistry", IUPAC Green Book, 3rd Edition, 2nd Printing, IUPAC \& RSC Publishing, Cambridge (2008)

ISBN: 978-0-85404-433-7

A catalogue record for this book is available from the British Library
© International Union of Pure and Applied Chemistry 2007
Reprinted 2008
All rights reserved
Apart from fair dealing for the purposes of research for non-commercial purposes or for private study, criticism or review, as permitted under the Copyright, Designs and Patents Act 1988 and the Copyright and Related Rights Regulations 2003, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of The Royal Society of Chemistry, or in the case of reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of the licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to The Royal Society of Chemistry at the address printed on this page.

Published by The Royal Society of Chemistry,
Thomas Graham House, Science Park, Milton Road,
Cambridge CB4 0WF, UK
Registered Charity Number 207890
For further information see our web site at www.rsc.org

Professor E. Richard Cohen
17735, Corinthian Drive
Encino, CA 91316-3704
USA
email: ercohen@aol.com

Professor Jeremy G. Frey
University of Southampton
Department of Chemistry
Southampton, SO 17 1BJ
United Kingdom
email: j.g.frey@soton.ac.uk

Professor Kozo Kuchitsu
Tokyo University of Agriculture and Technology
Graduate School of BASE
Naka-cho, Koganei
Tokyo 184-8588
Japan
email: kuchitsu@cc.tuat.ac.jp

Professor Ian Mills
University of Reading
Department of Chemistry
Reading, RG6 6AD
United Kingdom
email: i.m.mills@rdg.ac.uk

Professor Martin Quack
ETH Zürich
Physical Chemistry
CH-8093 Zürich
Switzerland
email: Martin@Quack.ch or quack@ir.phys.chem.ethz.ch

Professor Herbert L. Strauss
University of California
Berkeley, CA 94720-1460
USA
email: hls@berkeley.edu

Dr. Anders J Thor
Secretariat of ISO/TC 12
SIS Swedish Standards Institute
Sankt Paulsgatan 6
SE-11880 Stockholm
Sweden
email: anders.j.thor@sis.se

Professor Tom Cvitaš
University of Zagreb
Department of Chemistry
Horvatovac 102a
HR-10000 Zagreb
Croatia
email: cvitas@chem.pmf.hr

Professor Bertil Holmström
Ulveliden 15
SE-41674 Göteborg
Sweden
email: bertilh@brikks.com

Professor Roberto Marquardt
Laboratoire de Chimie Quantique
Institut de Chimie
Université Louis Pasteur
4, Rue Blaise Pascal
F-67000 Strasbourg
France
email: roberto.marquardt@chimie.u-strasbg.fr

Professor Franco Pavese
Instituto Nazionale di Ricerca Metrologica (INRIM)
strada delle Cacce 73-91
I-10135 Torino
Italia
email: F.Pavese@imgc.cnr.it

Professor Jürgen Stohner
ZHAW Zürich University of Applied Sciences
ICBC Institute of Chemistry \& Biological Chemistry
Campus Reidbach T, Einsiedlerstr. 31
CH-8820 Wädenswil
Switzerland
email: sthj@zhaw.ch or just@ir.phys.chem.ethz.ch

Professor Michio Takami
3-10-8 Atago
Niiza, Saitama 352-0021
Japan
email: takamimy@d6.dion.ne.jp

CONTENTS
PREFACEix
HISTORICAL INTRODUCTION xi
1 PHYSICAL QUANTITIES AND UNITS 1
1.1 Physical quantities and quantity calculus 3
1.2 Base quantities and derived quantities 4
1.3 Symbols for physical quantities and units 5
1.3.1 General rules for symbols for quantities 5
1.3.2 General rules for symbols for units 5
1.4 Use of the words "extensive", "intensive", "specific", and "molar" 6
1.5 Products and quotients of physical quantities and units 7
1.6 The use of italic and Roman fonts for symbols in scientific publications 7
2 TABLES OF PHYSICAL QUANTITIES 11
2.1 Space and time 13
2.2 Classical mechanics 14
2.3 Electricity and magnetism 16
2.4 Quantum mechanics and quantum chemistry 18
2.4.1 Ab initio Hartree-Fock self-consistent field theory (ab initio SCF) 20
2.4.2 Hartree-Fock-Roothaan SCF theory, using molecular orbitals expanded as linear combinations of atomic-orbital basis functions (LCAO-MO theory) 21
2.5 Atoms and molecules 22
2.6 Spectroscopy 25
2.6.1 Symbols for angular momentum operators and quantum numbers 30
2.6.2 Symbols for symmetry operators and labels for symmetry species 31
2.6.3 Other symbols and conventions in optical spectroscopy 32
2.7 Electromagnetic radiation 34
2.7.1 Quantities and symbols concerned with the measurement of absorption intensity 38
2.7.2 Conventions for absorption intensities in condensed phases 40
2.8 Solid state 42
2.8.1 Symbols for planes and directions in crystals 44
2.9 Statistical thermodynamics 45
2.10 General chemistry 47
2.10.1 Other symbols and conventions in chemistry 49
2.11 Chemical thermodynamics 56
2.11.1 Other symbols and conventions in chemical thermodynamics 59
2.12 Chemical kinetics and photochemistry 63
2.12.1 Other symbols, terms, and conventions used in chemical kinetics 68
2.13 Electrochemistry 70
2.13.1 Sign and notation conventions in electrochemistry 73
2.14 Colloid and surface chemistry 77
2.14.1 Surface structure 79
2.15 Transport properties 81
2.15.1 Transport characteristic numbers: Quantities of dimension one 82
3 DEFINITIONS AND SYMBOLS FOR UNITS 83
3.1 The International System of Units (SI) 85
3.2 Names and symbols for the SI base units 86
3.3 Definitions of the SI base units 87
3.4 SI derived units with special names and symbols 89
3.5 SI derived units for other quantities 90
3.6 SI prefixes and prefixes for binary multiples 91
3.7 Non-SI units accepted for use with the SI 92
3.8 Coherent units and checking dimensions 93
3.9 Fundamental physical constants used as units 94
3.9.1 Atomic units 94
3.9.2 The equations of quantum chemistry expressed in terms of reduced quantities using atomic units 95
3.10 Dimensionless quantities 97
3.10.1 Fractions (relative values, yields, and efficiencies) 97
3.10.2 Deprecated usage 97
3.10.3 Units for logarithmic quantities: neper, bel, and decibel 98
4 RECOMMENDED MATHEMATICAL SYMBOLS 101
4.1 Printing of numbers and mathematical symbols 103
4.2 Symbols, operators, and functions 105
5 FUNDAMENTAL PHYSICAL CONSTANTS 109
6 PROPERTIES OF PARTICLES, ELEMENTS, AND NUCLIDES 113
6.1 Properties of selected particles 115
6.2 Standard atomic weights of the elements 2005 117
6.3 Properties of nuclides 121
7 CONVERSION OF UNITS 129
7.1 The use of quantity calculus 131
7.2 Conversion tables for units 135
7.3 The esu, emu, Gaussian, and atomic unit systems in relation to the SI 143
7.4 Transformation of equations of electromagnetic theory between the ISQ(SI) and Gaussian forms 146
8 UNCERTAINTY 149
8.1 Reporting uncertainty for a single measured quantity 151
8.2 Propagation of uncertainty for uncorrelated measurements 153
8.3 Reporting uncertainties in terms of confidence intervals 154
9 ABBREVIATIONS AND ACRONYMS 155
10 REFERENCES 165
10.1 Primary sources 167
10.2 Secondary sources 169
11 GREEK ALPHABET 179
12 INDEX OF SYMBOLS 181
13 SUBJECT INDEX 195
NOTES 231
PRESSURE CONVERSION FACTORS 233NUMERICAL ENERGY CONVERSION FACTORSIUPAC PERIODIC TABLE OF THE ELEMENTS

PREFACE

The purpose of this manual is to improve the exchange of scientific information among the readers in different disciplines and across different nations. As the volume of scientific literature expands, each discipline has a tendency to retreat into its own jargon. This book attempts to provide a readable compilation of widely used terms and symbols from many sources together with brief understandable definitions. This Third Edition reflects the experience of the contributors with the previous editions and we are grateful for the many thoughtful comments we have received. Most of the material in this book is "standard", but a few definitions and symbols are not universally accepted. In such cases, we have attempted to list acceptable alternatives. The references list the reports from IUPAC and other sources in which some of these notational problems are discussed further. IUPAC is the acronym for International Union of Pure and Applied Chemistry.

A spectacular example of the consequences of confusion of units is provided by the loss of the United States NASA satellite, the "Mars Climate Orbiter" (MCO). The Mishap Investigation Board (Phase I Report, November 10, 1999) ${ }^{1}$ found that the root cause for the loss of the MCO was "the failure to use metric units in the coding of the ground (based) software file". The impulse was reported in Imperial units of pounds (force)-seconds (lbf-s) rather than in the metric units of Newton (force)-seconds ($\mathrm{N}-\mathrm{s}$). This caused an error of a factor of 4.45 and threw the satellite off course. ${ }^{2}$ We urge the users of this book always to define explicitly the terms, the units, and the symbols that they use.

This edition has been compiled in machine-readable form by Martin Quack and Jürgen Stohner. The entire text of the manual will be available on the Internet some time after the publication of the book and will be accessible via the IUPAC web site, http://www.iupac.org. Suggestions and comments are welcome and may be addressed in care of the

```
IUPAC Secretariat
PO Box 13757
Research Triangle Park, NC 27709-3757, USA
email: secretariat@iupac.org
```

Corrections to the manual will be listed periodically.
The book has been systematically brought up to date and new sections have been added. As in previous editions, the first chapter describes the use of quantity calculus for handling physical quantities and the general rules for the symbolism of quantities and units and includes an expanded description on the use of roman and italic fonts in scientific printing. The second chapter lists the symbols for quantities in a wide range of topics used in physical chemistry. New parts of this chapter include a section on surface structure. The third chapter describes the use of the International System of units (SI) and of a few other systems such as atomic units. Chapter 4 outlines mathematical symbols and their use in print. Chapter 5 presents the 2006 revision of the fundamental physical constants, and Chapter 6 the properties of elementary particles, elements and nuclides. Conversion of units follows in Chapter 7, together with the equations of electricity and magnetism in their various forms. Chapter 8 is entirely new and outlines the treatment of uncertainty in physical measurements. Chapter 9 lists abbreviations and acronyms. Chapter 10 provides the references, and Chapter 11, the Greek alphabet. In Chapters 12 and 13, we end with indexes. The IUPAC Periodic Table of the Elements is shown on the inside back cover and the preceding pages list frequently used conversion factors for pressure and energy units.

[^0]Many people have contributed to this volume. The people most directly responsible are acknowledged in the Historical Introduction. Many of the members of IUPAC I. 1 have continued to make active contributions long after their terms on the Commission expired. We also wish to acknowledge the members of the other Commissions of the Physical Chemistry Division: Chemical Kinetics, Colloid and Surface Chemistry, Electrochemistry, Spectroscopy, and Thermodynamics, who have each contributed to the sections of the book that concern their various interests.

We also thank all those who have contributed whom we have inadvertently missed out of these lists.

Commission on Physicochemical Symbols, Terminology and Units

Jeremy G. Frey and Herbert L. Strauss Cosers)

HISTORICAL INTRODUCTION

The Manual of Symbols and Terminology for Physicochemical Quantities and Units [1.a], to which this is a direct successor, was first prepared for publication on behalf of the Physical Chemistry Division of IUPAC by M. L. McGlashan in 1969, when he was chairman of the Commission on Physicochemical Symbols, Terminology and Units (I.1). He made a substantial contribution towards the objective which he described in the preface to that first edition as being "to secure clarity and precision, and wider agreement in the use of symbols, by chemists in different countries, among physicists, chemists and engineers, and by editors of scientific journals". The second edition of that manual prepared for publication by M. A. Paul in 1973 [1.b], and the third edition prepared by D. H. Whiffen in 1976 [1.c], were revisions to take account of various developments in the Système International d'Unités (International System of Units, international abbreviation SI), and other developments in terminology.

The first edition of Quantities, Units and Symbols in Physical Chemistry published in 1988 [2.a] was a substantially revised and extended version of the earlier manuals. The decision to embark on this project originally proposed by N. Kallay was taken at the IUPAC General Assembly at Leuven in 1981, when D. R. Lide was chairman of the Commission. The working party was established at the 1983 meeting in Lyngby, when K. Kuchitsu was chairman, and the project has received strong support throughout from all present and past members of the Commission I. 1 and other Physical Chemistry Commissions, particularly D. R. Lide, D. H. Whiffen, and N. Sheppard.

The extensions included some of the material previously published in appendices [1.d-1.k]; all the newer resolutions and recommendations on units by the Conférence Générale des Poids et Mesures (CGPM); and the recommendations of the International Union of Pure and Applied Physics (IUPAP) of 1978 and of Technical Committee 12 of the International Organization for Standardization, Quantities, units, symbols, conversion factors (ISO/TC 12). The tables of physical quantities (Chapter 2) were extended to include defining equations and SI units for each quantity. The style was also slightly changed from being a book of rules towards a manual of advice and assistance for the day-to-day use of practicing scientists. Examples of this are the inclusion of extensive notes and explanatory text inserts in Chapter 2, the introduction to quantity calculus, and the tables of conversion factors between SI and non-SI units and equations in Chapter 7.

The second edition (1993) was a revised and extended version of the previous edition. The revisions were based on the recent resolutions of the CGPM [3]; the new recommendations by IUPAP [4]; the new international standards ISO 31 [5,6]; some recommendations published by other IUPAC commissions; and numerous comments we have received from chemists throughout the world. The revisions in the second edition were mainly carried out by Ian Mills and Tom Cvitaš with substantial input from Robert Alberty, Kozo Kuchitsu, Martin Quack as well as from other members of the IUPAC Commission on Physicochemical Symbols, Terminology and Units.

The manual has found wide acceptance in the chemical community, and various editions have been translated into Russian [2.c], Hungarian [2.d], Japanese [2.e], German [2.f], Romanian [2.g], Spanish [2.h], and Catalan [2.i]. Large parts of it have been reproduced in the 71st and subsequent editions of the Handbook of Chemistry and Physics published by CRC Press.

The work on revisions of the second edition started immediately after its publication and between 1995 and 1997 it was discussed to change the title to "Physical-Chemical Quantities, Units and Symbols" and to apply rather complete revisions in various parts. It was emphasized that the book covers as much the field generally called "physical chemistry" as the field called "chemical physics". Indeed we consider the larger interdisciplinary field where the boundary between physics and chemistry has largely disappeared [10]. At the same time it was decided to produce the whole book as a text file in computer readable form to allow for future access directly by computer, some
time after the printed version would be available. Support for this decision came from the IUPAC secretariat in the Research Triangle Park, NC (USA) (John W. Jost). The practical work on the revisions was carried out at the ETH Zürich, while the major input on this edition came from the group of editors listed now in full on the cover. It fits with the new structure of IUPAC that these are defined as project members and not only through membership in the commission. The basic structure of this edition was finally established at a working meeting of the project members in Engelberg, Switzerland in March 1999, while further revisions were discussed at the Berlin meeting (August 1999) and thereafter. In 2001 it was decided finally to use the old title. In this edition the whole text and all tables have been revised, many chapters substantially. This work was carried out mainly at ETH Zürich, where Jürgen Stohner coordinated the various contributions and corrections from the current project group members and prepared the print-ready electronic document. Larger changes compared to previous editions concern a complete and substantial update of recently available improved constants, sections on uncertainty in physical quantities, dimensionless quantities, mathematical symbols and numerous other sections.

At the end of this historical survey we might refer also to what might be called the tradition of this manual. It is not the aim to present a list of recommendations in form of commandments. Rather we have always followed the principle that this manual should help the user in what may be called "good practice of scientific language". If there are several well established uses or conventions, these have been mentioned, giving preference to one, when this is useful, but making allowance for variety, if such variety is not harmful to clarity. In a few cases possible improvements of conventions or language are mentioned with appropriate reference, even if uncommon, but without specific recommendation. In those cases where certain common uses are deprecated, there are very strong reasons for this and the reader should follow the corresponding advice.

Zürich, 2007

Martin Quack

The membership of the Commission during the period 1963 to 2006, during which the successive editions of this manual were prepared, was as follows:

Titular members

Chairman: 1963-1967 G. Waddington (USA); 1967-1971 M.L. McGlashan (UK); 1971-1973 M.A. Paul (USA); 1973-1977 D.H. Whiffen (UK); 1977-1981 D.R. Lide Jr (USA); 1981-1985 K. Kuchitsu (Japan); 1985-1989 I.M. Mills (UK); 1989-1993 T. Cvitaš (Croatia); 1993-1999 H.L. Strauss (USA); 2000-2007 J.G. Frey (UK).

Secretary: 1963-1967 H. Brusset (France); 1967-1971 M.A. Paul (USA); 1971-1975 M. Fayard (France); 1975-1979 K.G. Weil (Germany); 1979-1983 I. Ansara (France); 1983-1985 N. Kallay (Croatia); 1985-1987 K.H. Homann (Germany); 1987-1989 T. Cvitaš (Croatia); 1989-1991 I.M. Mills (UK); 1991-1997, 2001-2005 M. Quack (Switzerland); 1997-2001 B. Holmström (Sweden).

Other titular members
1975-1983 I. Ansara (France); 1965-1969 K.V. Astachov (Russia); 1963-1971 R.G. Bates (USA); 1963-1967 H. Brusset (France); 1985-1997 T. Cvitaš (Croatia); 1963 F. Daniels (USA); 1979-1981 D.H.W. den Boer (Netherlands); 1981-1989 E.T. Denisov (Russia); 1967-1975 M. Fayard (France); 1997-2005 J. Frey (UK); 1963-1965 J.I. Gerassimov (Russia); 1991-2001 B. Holmström (Sweden); 1979-1987 K.H. Homann (Germany); 1963-1971 W. Jaenicke (Germany); 1967-1971 F. Jellinek (Netherlands); 1977-1985 N. Kallay (Croatia); 1973-1981 V. Kellö (Czechoslovakia); 1989-1997 I.V. Khudyakov (Russia); 1985-1987 W.H. Kirchhoff (USA); 1971-1979 J. Koefoed (Denmark); 1979-1987 K. Kuchitsu (Japan); 1971-1981 D.R. Lide Jr (USA); 1997-2001, 2006- R. Marquardt (France); 1963-1971 M.L. McGlashan (UK); 1983-1991 I.M. Mills (UK); 1963-1967 M. Milone (Italy); 1967-1973 M.A. Paul (USA); 1991-1999, 2006- F. Pavese (Italy); 1963-1967 K.J. Pedersen (Denmark); 1967-1975 A. Perez-Masiá (Spain); 1987-1997 and 2002-2005 M. Quack (Switzerland); 1971-1979 A. Schuyff (Netherlands); 1967-1970 L.G. Sillén (Sweden); 1989-1999 and 2002-2005 H.L. Strauss (USA); 1995-2001 M. Takami (Japan); 1987-1991 M. Tasumi (Japan); 1963-1967 G. Waddington (USA); 1981-1985 D.D. Wagman (USA); 1971-1979 K.G. Weil (Germany); 1971-1977 D.H. Whiffen (UK); 1963-1967 E.H. Wiebenga (Netherlands).

Associate members

1983-1991 R.A. Alberty (USA); 1983-1987 I. Ansara (France); 1979-1991 E.R. Cohen (USA); 1979-1981 E.T. Denisov (Russia); 1987-1991 G.H. Findenegg (Germany); 1987-1991 K.H. Homann (Germany); 1971-1973 W. Jaenicke (Germany); 1985-1989 N. Kallay (Croatia); 1987-1989 and 1998-1999 I.V. Khudyakov (Russia); 1979-1980 J. Koefoed (Denmark); 1987-1991 K. Kuchitsu (Japan); 1981-1983 D.R. Lide Jr (USA); 1971-1979 M.L. McGlashan (UK); 1991-1993 I.M. Mills (UK); 1973-1981 M.A. Paul (USA); 1999-2005 F. Pavese (Italy); 1975-1983 A. Perez-Masiá (Spain); 1997-1999 M. Quack (Switzerland); 1979-1987 A. Schuyff (Netherlands); 1963-1971 S. Seki (Japan); 2000-2001 H.L. Strauss (USA); 1991-1995 M. Tasumi (Japan); 1969-1977 J. Terrien (France); 1994-2001 A J Thor (Sweden); 1975-1979 L. Villena (Spain); 1967-1969 G. Waddington (USA); 1979-1983 K.G. Weil (Germany); 1977-1985 D.H. Whiffen (UK).

National representatives

Numerous national representatives have served on the commission over many years. We do not provide this long list here.

1 PHYSICAL QUANTITIES AND UNITS

1.1 PHYSICAL QUANTITIES AND QUANTITY CALCULUS

The value of a physical quantity Q can be expressed as the product of a numerical value $\{Q\}$ and a unit $[Q]$

$$
\begin{equation*}
Q=\{Q\}[Q] \tag{1}
\end{equation*}
$$

Neither the name of the physical quantity, nor the symbol used to denote it, implies a particular choice of unit (see footnote ${ }^{1}$, p. 4).

Physical quantities, numerical values, and units may all be manipulated by the ordinary rules of algebra. Thus we may write, for example, for the wavelength λ of one of the yellow sodium lines

$$
\begin{equation*}
\lambda=5.896 \times 10^{-7} \mathrm{~m}=589.6 \mathrm{~nm} \tag{2}
\end{equation*}
$$

where m is the symbol for the unit of length called the metre (or meter, see Sections 3.2 and 3.3 , p. 86 and 87), nm is the symbol for the nanometre, and the units metre and nanometre are related by

$$
\begin{equation*}
1 \mathrm{~nm}=10^{-9} \mathrm{~m} \quad \text { or } \quad \mathrm{nm}=10^{-9} \mathrm{~m} \tag{3}
\end{equation*}
$$

The equivalence of the two expressions for λ in Equation (2) follows at once when we treat the units by the rules of algebra and recognize the identity of 1 nm and $10^{-9} \mathrm{~m}$ in Equation (3). The wavelength may equally well be expressed in the form

$$
\begin{equation*}
\lambda / \mathrm{m}=5.896 \times 10^{-7} \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\lambda / \mathrm{nm}=589.6 \tag{5}
\end{equation*}
$$

It can be useful to work with variables that are defined by dividing the quantity by a particular unit. For instance, in tabulating the numerical values of physical quantities or labeling the axes of graphs, it is particularly convenient to use the quotient of a physical quantity and a unit in such a form that the values to be tabulated are numerical values, as in Equations (4) and (5).

Example

$\ln (p / \mathrm{MPa})=$	$a+b / T=$
	$a+b^{\prime}\left(10^{3} \mathrm{~K} / T\right)$
T / K	$10^{3} \mathrm{~K} / T$

Algebraically equivalent forms may be used in place of $10^{3} \mathrm{~K} / T$, such as kK / T or $10^{3}(T / \mathrm{K})^{-1}$. Equations between numerical values depend on the choice of units, whereas equations between quantities have the advantage of being independent of this choice. Therefore the use of equations between quantities should generally be preferred.

The method described here for handling physical quantities and their units is known as quantity calculus $[11-13]$. It is recommended for use throughout science and technology. The use of quantity calculus does not imply any particular choice of units; indeed one of the advantages of quantity calculus is that it makes changes between units particularly easy to follow. Further examples of the use of quantity calculus are given in Section 7.1, p. 131, which is concerned with the problems of transforming from one set of units to another.

1.2 BASE QUANTITIES AND DERIVED QUANTITIES

By convention physical quantities are organized in a dimensional system built upon seven base quantities, each of which is regarded as having its own dimension. These base quantities in the International System of Quantities (ISQ) on which the International System of units (SI) is based, and the principal symbols used to denote them and their dimensions are as follows:

Base quantity	Symbol for quantity	Symbol for dimension
length	l	L
mass	m	M
time	t	T
electric current	I	I
thermodynamic temperature	T	Θ
amount of substance	n	N
luminous intensity	I_{v}	J

All other quantities are called derived quantities and are regarded as having dimensions derived algebraically from the seven base quantities by multiplication and division.
Example dimension of energy is equal to dimension of $M L^{2} T^{-2}$
This can be written with the symbol dim for dimension (see footnote ${ }^{1}$, below)

$$
\operatorname{dim}(E)=\operatorname{dim}\left(m \cdot l^{2} \cdot t^{-2}\right)=\mathrm{M}^{2} \mathrm{~T}^{-2}
$$

The quantity amount of substance is of special importance to chemists. Amount of substance is proportional to the number of specified elementary entities of the substance considered. The proportionality factor is the same for all substances; its reciprocal is the Avogadro constant (see Section 2.10 , p. 47 , Section 3.3, p. 88, and Chapter 5, p. 111). The SI unit of amount of substance is the mole, defined in Section 3.3, p. 88. The physical quantity "amount of substance" should no longer be called "number of moles", just as the physical quantity "mass" should not be called "number of kilograms". The name "amount of substance", sometimes also called "chemical amount", may often be usefully abbreviated to the single word "amount", particularly in such phrases as "amount concentration" (see footnote ${ }^{2}$, below), and "amount of N_{2} ". A possible name for international usage has been suggested: "enplethy" [10] (from Greek, similar to enthalpy and entropy).

The number and choice of base quantities is pure convention. Other quantities could be considered to be more fundamental, such as electric charge Q instead of electric current I.

$$
\begin{equation*}
Q=\int_{t_{1}}^{t_{2}} I \mathrm{~d} t \tag{7}
\end{equation*}
$$

However, in the ISQ, electric current is chosen as base quantity and ampere is the SI base unit. In atomic and molecular physics, the so-called atomic units are useful (see Section 3.9, p. 94).

[^1]
1.3 SYMBOLS FOR PHYSICAL QUANTITIES AND UNITS [5.a]

A clear distinction should be drawn between the names and symbols for physical quantities, and the names and symbols for units. Names and symbols for many quantities are given in Chapter 2, p. 11; the symbols given there are recommendations. If other symbols are used they should be clearly defined. Names and symbols for units are given in Chapter 3, p. 83; the symbols for units listed there are quoted from the Bureau International des Poids et Mesures (BIPM) and are mandatory.

1.3.1 General rules for symbols for quantities

The symbol for a physical quantity should be a single letter (see footnote ${ }^{1}$, below) of the Latin or Greek alphabet (see Section 1.6, p. 7). Capital or lower case letters may both be used. The letter should be printed in italic (sloping) type. When necessary the symbol may be modified by subscripts and superscripts of specified meaning. Subscripts and superscripts that are themselves symbols for physical quantities or for numbers should be printed in italic type; other subscripts and superscripts should be printed in Roman (upright) type.

| Examples | C_{p} for heat capacity at constant pressure
 p_{i} for partial pressure of the i th substance |
| :--- | :--- | :--- |
| but $\quad$$C_{\mathrm{B}}$
 μ_{B} | for heat capacity of substance B |
| E_{k} | for chemical potential of substance B in phase α |
| μ_{r} | for relative energy |
| $\Delta_{\mathrm{r}} H^{\ominus}$ | for standard reaction enthalpy |
| V_{m} | for molar volume |
| A_{10} | for decadic absorbance |

The meaning of symbols for physical quantities may be further qualified by the use of one or more subscripts, or by information contained in parentheses.

$$
\begin{array}{ll}
\text { Examples } & \Delta_{\mathrm{f}} S^{\ominus}\left(\mathrm{HgCl}_{2}, \mathrm{cr}, 25^{\circ} \mathrm{C}\right)=-154.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& \mu_{i}=\left(\partial G / \partial n_{i}\right)_{T, p, \ldots, n_{j}, \ldots ; j \neq i} \text { or } \mu_{i}=\left(\partial G / \partial n_{i}\right)_{T, p, n_{j \neq i}}
\end{array}
$$

Vectors and matrices may be printed in bold-face italic type, e.g. $\boldsymbol{A}, \boldsymbol{a}$. Tensors may be printed in bold-face italic sans serif type, e.g. S, T. Vectors may alternatively be characterized by an arrow, \vec{A}, \vec{a} and second-rank tensors by a double arrow, $\overrightarrow{\vec{S}}, \overrightarrow{\vec{T}}$.

1.3.2 General rules for symbols for units

Symbols for units should be printed in Roman (upright) type. They should remain unaltered in the plural, and should not be followed by a full stop except at the end of a sentence.
Example $\quad r=10 \mathrm{~cm}$, not cm . or cms.

[^2]Symbols for units shall be printed in lower case letters, unless they are derived from a personal name when they shall begin with a capital letter. An exception is the symbol for the litre which may be either L or l, i.e. either capital or lower case (see footnote ${ }^{2}$, below).

```
Examples m (metre), s (second), but J (joule), Hz (hertz)
```

Decimal multiples and submultiples of units may be indicated by the use of prefixes as defined in Section 3.6, p. 91.
Examples nm (nanometre), MHz (megahertz), kV (kilovolt)

1.4 USE OF THE WORDS "EXTENSIVE", "INTENSIVE", "SPECIFIC", AND "MOLAR"

A quantity that is additive for independent, noninteracting subsystems is called extensive; examples are mass m, volume V, Gibbs energy G. A quantity that is independent of the extent of the system is called intensive; examples are temperature T, pressure p, chemical potential (partial molar Gibbs energy) μ.

The adjective specific before the name of an extensive quantity is used to mean divided by mass. When the symbol for the extensive quantity is a capital letter, the symbol used for the specific quantity is often the corresponding lower case letter.

```
Examples volume, \(V\), and
specific volume, \(v=V / m=l / \rho\) (where \(\rho\) is mass density);
heat capacity at constant pressure, \(C_{p}\), and
specific heat capacity at constant pressure, \(c_{p}=C_{p} / m\)
```

ISO [5.a] and the Clinical Chemistry Division of IUPAC recommend systematic naming of physical quantities derived by division with mass, volume, area, and length by using the attributes massic or specific, volumic, areic, and lineic, respectively. In addition the Clinical Chemistry Division of IUPAC recommends the use of the attribute entitic for quantities derived by division with the number of entities [14]. Thus, for example, the specific volume could be called massic volume and the surface charge density would be areic charge.

The adjective molar before the name of an extensive quantity generally means divided by amount of substance. The subscript m on the symbol for the extensive quantity denotes the corresponding molar quantity.

```
Examples volume, \(V \quad\) molar volume, \(V_{\mathrm{m}}=V / n\) (Section 2.10, p. 47)
enthalpy, \(H\) molar enthalpy, \(H_{\mathrm{m}}=H / n\)
```

If the name enplethy (see Section 1.2, p. 4) is accepted for "amount of substance" one can use enplethic volume instead of molar volume, for instance. The word "molar" violates the principle that the name of the quantity should not be mixed with the name of the unit (mole in this case). The use of enplethic resolves this problem. It is sometimes convenient to divide all extensive quantities by amount of substance, so that all quantities become intensive; the subscript may then be omitted if this convention is stated and there is no risk of ambiguity. (See also the symbols recommended for partial molar quantities in Section 2.11, p. 57, and in Section 2.11 .1 (iii), p. 60.)

There are a few cases where the adjective molar has a different meaning, namely divided by amount-of-substance concentration.
Examples absorption coefficient, a
molar absorption coefficient, $\varepsilon=a / c$ (see Section 2.7, note 22, p. 37)
conductivity, κ
molar conductivity, $\Lambda=\kappa / c$ (see Section 2.13, p. 73)

[^3]
1.5 PRODUCTS AND QUOTIENTS OF PHYSICAL QUANTITIES AND UNITS

Products of physical quantities may be written in any of the ways

$$
a b \text { or } a b \text { or } a \cdot b \text { or } a \times b
$$

and similarly quotients may be written

$$
\begin{array}{ll}
& a / b \text { or } \frac{a}{b} \quad \text { or by writing the product of } a \text { and } b^{-1} \text {, e.g. } a b^{-1} \\
\text { Examples } \quad F=m a, \quad p=n R T / V
\end{array}
$$

Not more than one solidus (/) shall be used in the same expression unless parentheses are used to eliminate ambiguity.

Example $\quad(a / b) / c$ or $a /(b / c)$ (in general different), not $a / b / c$
In evaluating combinations of many factors, multiplication written without a multiplication sign takes precedence over division in the sense that $a / b c$ is interpreted as $a /(b c)$ and not as $(a / b) c$; however, it is necessary to use parentheses to eliminate ambiguity under all circumstances, thus avoiding expressions of the kind $a / b c d$ etc. Furthermore, $a / b+c$ is interpreted as $(a / b)+c$ and not as $a /(b+c)$. Again, the use of parentheses is recommended (required for $a /(b+c)$).

Products and quotients of units may be written in a similar way, except that the cross (\times) is not used as a multiplication sign between units. When a product of units is written without any multiplication sign a space shall be left between the unit symbols.

Example $\quad 1 \mathrm{~N}=1 \mathrm{~m} \mathrm{~kg} \mathrm{~s}{ }^{-2}=1 \mathrm{~m} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-2}=1 \mathrm{~m} \mathrm{~kg} / \mathrm{s}^{2}, \quad$ not $1 \mathrm{mkgs}^{-2}$

1.6 THE USE OF ITALIC AND ROMAN FONTS FOR SYMBOLS IN SCIENTIFIC PUBLICATIONS

Scientific manuscripts should follow the accepted conventions concerning the use of italic and Roman fonts for symbols. An italic font is generally used for emphasis in running text, but it has a quite specific meaning when used for symbols in scientific text and equations. The following summary is intended to help in the correct use of italic fonts in preparing manuscript material.

1. The general rules concerning the use of italic (sloping) font or Roman (upright) font are presented in Section 1.3.2, p. 5 and in Section 4.1, p. 103 in relation to mathematical symbols and operators. These rules are also presented in the International Standards ISO 31 (successively being replaced by ISO/IEC 80000) [5], ISO 1000 [6], and in the SI Brochure [3].
2. The overall rule is that symbols representing physical quantities or variables are italic, but symbols representing units, mathematical constants, or labels, are roman. Sometimes there may seem to be doubt as to whether a symbol represents a quantity or has some other meaning (such as label): a good rule is that quantities, or variables, may have a range of numerical values, but labels cannot. Vectors, tensors and matrices are denoted using a bold-face (heavy) font, but they shall be italic since they are quantities.
Examples The Planck constant $h=6.62606896(33) \times 10^{-34}$ J s.
The electric field strength \boldsymbol{E} has components E_{x}, E_{y}, and E_{z}.
The mass of my pen is $m=24 \mathrm{~g}=0.024 \mathrm{~kg}$.
3. The above rule applies equally to all letter symbols from both the Greek and the Latin alphabet, although some authors resist putting Greek letters into italic.
Example When the symbol μ is used to denote a physical quantity (such as permeability or reduced mass) it should be italic, but when it is used as a prefix in a unit such as microgram, $\mu \mathrm{g}$, or when it is used as the symbol for the muon, μ (see paragraph 5 below), it should be roman.
4. Numbers, and labels, are roman (upright).

Examples The ground and first excited electronic state of the CH_{2} molecule are denoted $\ldots\left(2 \mathrm{a}_{1}\right)^{2}\left(1 \mathrm{~b}_{2}\right)^{2}\left(3 \mathrm{a}_{1}\right)^{1}\left(1 \mathrm{~b}_{1}\right)^{1}, \widetilde{\mathrm{X}}^{3} \mathrm{~B}_{1}$, and $\ldots\left(2 \mathrm{a}_{1}\right)^{2}\left(1 \mathrm{~b}_{2}\right)^{2}\left(3 \mathrm{a}_{1}\right)^{2}$, $\widetilde{\mathrm{a}}^{1} \mathrm{~A}_{1}$, respectively. The π-electron configuration and symmetry of the benzene molecule in its ground state are denoted: ... $\left(\mathrm{a}_{2 \mathrm{u}}\right)^{2}\left(\mathrm{e}_{1 \mathrm{~g}}\right)^{4}, \widetilde{\mathrm{X}}^{1} \mathrm{~A}_{1 \mathrm{~g}}$. All these symbols are labels and are roman.
5. Symbols for elements in the periodic system shall be roman. Similarly the symbols used to represent elementary particles are always roman. (See, however, paragraph 9 below for use of italic font in chemical-compound names.)
Examples $\quad \mathrm{H}, \mathrm{He}, \mathrm{Li}, \mathrm{Be}, \mathrm{B}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{F}, \mathrm{Ne}, \ldots$ for atoms; efor the electron, p for the proton, n for the neutron, μ for the muon, α for the alpha particle, etc.
6. Symbols for physical quantities are single, or exceptionally two letters of the Latin or Greek alphabet, but they are frequently supplemented with subscripts, superscripts or information in parentheses to specify further the quantity. Further symbols used in this way are either italic or roman depending on what they represent.
Examples $\quad H$ denotes enthalpy, but H_{m} denotes molar enthalpy (m is a mnemonic label for molar, and is therefore roman). C_{p} and C_{V} denote the heat capacity at constant pressure p and volume V, respectively (note the roman m but italic p and $V)$. The chemical potential of argon might be denoted μ_{Ar} or $\mu(\mathrm{Ar})$, but the chemical potential of the i th component in a mixture would be denoted μ_{i}, where i is italic because it is a variable subscript.
7. Symbols for mathematical operators are always roman. This applies to the symbol Δ for a difference, δ for an infinitesimal variation, d for an infinitesimal difference (in calculus), and to capital Σ and Π for summation and product signs, respectively. The symbols π (3.141 592...), e (2.718 $281 \ldots$, base of natural logarithms), i (square root of minus one), etc. are always roman, as are the symbols for specified functions such as $\log \left(\lg\right.$ for $\log _{10}$, \ln for $\log _{\mathrm{e}}$, or lb for $\log _{2}$), exp, \sin, cos, tan, erf, div, grad, rot, etc. The particular operators $\boldsymbol{g r a d}$ and rot and the corresponding symbols $\boldsymbol{\nabla}$ for $\boldsymbol{g r a d}, \nabla \times$ for rot, and $\boldsymbol{\nabla}$. for $\boldsymbol{d i v}$ are printed in bold-face to indicate the vector or tensor character following [5.k]. Some of these letters, e.g. e for elementary charge, are also sometimes used to represent physical quantities; then of course they shall be italic, to distinguish them from the corresponding mathematical symbol.
Examples $\quad \Delta H=H$ (final) $-H$ (initial); $(\mathrm{d} p / \mathrm{d} t)$ used for the rate of change of pressure; δx used to denote an infinitesimal variation of x. But for a damped linear oscillator the amplitude F as a function of time t might be expressed by the equation $F=F_{0} \exp (-\delta t) \sin (\omega t)$ where δ is the decay coefficient (SI unit: Np / s) and ω is the angular frequency (SI unit: $\mathrm{rad} / \mathrm{s}$). Note the use of roman δ for the operator in an infinitesimal variation of $x, \delta x$, but italic δ for the decay coefficient in the product δt. Note that the products δt and ωt are both dimensionless, but are described as having the unit neper $(\mathrm{Np}=1)$ and radian ($\operatorname{rad}=1$), respectively.
8. The fundamental physical constants are always regarded as quantities subject to measurement (even though they are not considered to be variables) and they should accordingly always be italic. Sometimes fundamental physical constants are used as though they were units, but they are still given italic symbols. An example is the hartree, E_{h} (see Section 3.9.1, p. 95). However, the electronvolt, eV, the dalton, Da, or the unified atomic mass unit, u, and the astronomical unit, ua, have been recognized as units by the Comité International des Poids et Mesures (CIPM) of the BIPM and they are accordingly given Roman symbols.
Examples $\quad c_{0}$ for the speed of light in vacuum, m_{e} for the electron mass, h for the Planck constant, N_{A} or L for the Avogadro constant, e for the elementary charge, a_{0} for the Bohr radius, etc.
The electronvolt $1 \mathrm{eV}=e \cdot 1 \mathrm{~V}=1.602176487(40) \times 10^{-19} \mathrm{~J}$.
9. Greek letters are used in systematic organic, inorganic, macromolecular, and biochemical nomenclature. These should be roman (upright), since they are not symbols for physical quantities. They designate the position of substitution in side chains, ligating-atom attachment and bridging mode in coordination compounds, end groups in structure-based names for macromolecules, and stereochemistry in carbohydrates and natural products. Letter symbols for elements are italic when they are locants in chemical-compound names indicating attachments to heteroatoms, e.g. $O-, N-, S$-, and P-. The italic symbol H denotes indicated or added hydrogen (see reference [15]).
Examples α-ethylcyclopentaneacetic acid
β-methyl-4-propylcyclohexaneethanol
tetracarbonyl $\left(\eta^{4}\right.$-2-methylidenepropane-1,3-diyl) chromium
α-(trichloromethyl)- ω-chloropoly (1,4-phenylenemethylene)
α-D-glucopyranose
5α-androstan- 3β-ol
N-methylbenzamide
O -ethyl hexanethioate $3 H$-pyrrole naphthalen-2(1 H)-one

2 TABLES OF PHYSICAL QUANTITIES

The following tables contain the internationally recommended names and symbols for the physical quantities most likely to be used by chemists. Further quantities and symbols may be found in recommendations by IUPAP [4] and ISO [5].

Although authors are free to choose any symbols they wish for the quantities they discuss, provided that they define their notation and conform to the general rules indicated in Chapter 1, it is clearly an aid to scientific communication if we all generally follow a standard notation. The symbols below have been chosen to conform with current usage and to minimize conflict so far as possible. Small variations from the recommended symbols may often be desirable in particular situations, perhaps by adding or modifying subscripts or superscripts, or by the alternative use of upper or lower case. Within a limited subject area it may also be possible to simplify notation, for example by omitting qualifying subscripts or superscripts, without introducing ambiguity. The notation adopted should in any case always be defined. Major deviations from the recommended symbols should be particularly carefully defined.

The tables are arranged by subject. The five columns in each table give the name of the quantity, the recommended symbol(s), a brief definition, the symbol for the coherent SI unit (without multiple or submultiple prefixes, see Section 3.6, p. 91), and note references. When two or more symbols are recommended, commas are used to separate symbols that are equally acceptable, and symbols of second choice are put in parentheses. A semicolon is used to separate symbols of slightly different quantities. The definitions are given primarily for identification purposes and are not necessarily complete; they should be regarded as useful relations rather than formal definitions. For some of the quantities listed in this chapter, the definitions given in various IUPAC documents are collected in [16]. Useful definitions of physical quantities in physical organic chemistry can be found in [17] and those in polymer chemistry in [18]. For dimensionless quantities, a 1 is entered in the SI unit column (see Section 3.10, p. 97). Further information is added in notes, and in text inserts between the tables, as appropriate. Other symbols used are defined within the same table (not necessarily in the order of appearance) and in the notes.

2.1 SPACE AND TIME

The names and symbols recommended here are in agreement with those recommended by IUPAP [4] and ISO [5.b].

(1) An infinitesimal area may be regarded as a vector $\boldsymbol{e}_{\mathrm{n}} \mathrm{d} A$, where $\boldsymbol{e}_{\mathrm{n}}$ is the unit vector normal to the plane.
(2) The units radian (rad) and steradian (sr) for plane angle and solid angle are derived. Since they are of dimension one (i.e. dimensionless), they may be included in expressions for derived SI units if appropriate, or omitted if clarity and meaning is not lost thereby.
(3) N is the number of identical (periodic) events during the time t.
(4) The unit Hz is not to be used for angular frequency.
(5) Angular velocity can be treated as a vector, $\boldsymbol{\omega}$, perpendicular to the plane of rotation defined by $\boldsymbol{v}=\boldsymbol{\omega} \times \boldsymbol{r}$.
(6) For the speeds of light and sound the symbol c is customary.
(7) For acceleration of free fall the symbol g is used.

2.2 CLASSICAL MECHANICS

The names and symbols recommended here are in agreement with those recommended by IUPAP [4] and ISO [5.c]. Additional quantities and symbols used in acoustics can be found in [4,5.g].

Name	Symbol	Definition	SI unit	Notes
mass	m		kg	
reduced mass	μ	$\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$	kg	
density, mass density	ρ	$\rho=m / V$	$\mathrm{kg} \mathrm{m}{ }^{-3}$	
relative density	d	$d=\rho / \rho^{\ominus}$		1
surface density	ρ_{A}, ρ_{S}	$\rho_{A}=m / A$	$\mathrm{kg} \mathrm{m}^{-2}$	
specific volume	v	$v=V / m=1 / \rho$	$\mathrm{m}^{3} \mathrm{~kg}^{-1}$	
momentum	p	$\boldsymbol{p}=m \boldsymbol{v}$	$\mathrm{kg} \mathrm{m} \mathrm{s}{ }^{-1}$	
angular momentum	L	$\boldsymbol{L}=\boldsymbol{r} \times \boldsymbol{p}$	J s	2
moment of inertia	I, J	$I=\sum m_{i} r_{i}{ }^{2}$	$\mathrm{kg} \mathrm{m}{ }^{2}$	3
force	F	$\boldsymbol{F}=\mathrm{d} \boldsymbol{p} / \mathrm{d} t=m \boldsymbol{a}$	N	
moment of force, torque	$M,(T)$	$\boldsymbol{M}=\boldsymbol{r} \times \boldsymbol{F}$	N m	
energy	E		J	
potential energy	E_{p}, V, Φ	$E_{\mathrm{p}}=-\int \boldsymbol{F} \cdot \mathrm{d} \boldsymbol{r}$	J	4
kinetic energy	E_{k}, T, K	$E_{\mathrm{k}}=(1 / 2) m v^{2}$	J	
work	W, A, w	$W=\int \boldsymbol{F} \cdot \mathrm{d} \boldsymbol{r}$	J	
power	P	$P=\boldsymbol{F} \cdot \boldsymbol{v}=\mathrm{d} W / \mathrm{d} t$	W	
generalized coordinate	q		(varies)	
generalized momentum	p		(varies)	
Lagrange function	L	$L(q, \dot{q})=T(q, \dot{q})-V(q)$	J	
Hamilton function	H	$H(q, p)=\sum p_{i} \dot{q}_{i}-L(q, \dot{q})$	J	
action	S	$S=\int L \mathrm{~d} t$	J s	5
pressure	$p,(P)$	$p=F / A$	$\mathrm{Pa}, \mathrm{N} \mathrm{m}^{-2}$	
surface tension	γ, σ	$\gamma=\mathrm{d} W / \mathrm{d} A$	N m ${ }^{-1}$, Jm^{-2}	
weight	$G,(W, P)$	$G=m g$	N	
gravitational constant	G	$F=G m_{1} m_{2} / r^{2}$	N m ${ }^{2} \mathrm{~kg}^{-2}$	

(1) Usually $\rho^{\ominus}=\rho\left(\mathrm{H}_{2} \mathrm{O}, 4^{\circ} \mathrm{C}\right)$.
(2) Other symbols are customary in atomic and molecular spectroscopy (see Section 2.6, p. 25).
(3) In general \boldsymbol{I} is a tensor quantity: $I_{\alpha \alpha}=\sum_{i} m_{i}\left(\beta_{i}^{2}+\gamma_{i}^{2}\right)$, and $I_{\alpha \beta}=-\sum_{i} m_{i} \alpha_{i} \beta_{i}$ if $\alpha \neq \beta$, where α, β, γ is a permutation of x, y, z. For a continuous mass distribution the sums are replaced by integrals.
(4) Strictly speaking, only potential energy differences have physical significance, thus the integral is to be interpreted as a definite integral, for instance

$$
E_{\mathrm{p}}\left(r_{1}, r_{2}\right)=-\int_{r_{1}}^{r_{2}} \boldsymbol{F} \cdot \mathrm{~d} \boldsymbol{r}
$$

or possibly with the upper limit infinity

$$
E_{\mathrm{p}}(r)=-\int_{r}^{\infty} \boldsymbol{F} \cdot \mathrm{d} \boldsymbol{r}
$$

(5) Action is the time integral over the Lagrange function L, which is equivalent to $\int p \mathrm{~d} q-\int H \mathrm{~d} t$ (see [19]).

Name	Symbol	Definition	SI unit	Notes
normal stress	σ	$\sigma=F / A$	Pa	6
shear stress	τ	$\tau=F / A$	Pa	6
linear strain, relative elongation	ε, e	$\varepsilon=\Delta l / l$	1	
modulus of elasticity, Young's modulus	E	$E=\sigma / \varepsilon$	Pa	6
shear strain	γ	$\gamma=\Delta x / d$	1	6, 7
shear modulus, Coulomb's modulus	G	$G=\tau / \gamma$	Pa	6
volume strain, bulk strain	ϑ	$\vartheta=\Delta V / V_{0}$	1	6
bulk modulus, compression modulus	K	$K=-V_{0}(\mathrm{~d} p / \mathrm{d} V)$	Pa	6
viscosity, dynamic viscosity	$\eta,(\mu)$	$\tau_{x z}=\eta\left(\mathrm{d} v_{x} / \mathrm{d} z\right)$	Pa s	
fluidity	φ	$\varphi=1 / \eta$	$\mathrm{m} \mathrm{kg}{ }^{-1}$	
kinematic viscosity	ν	$\nu=\eta / \rho$	$\mathrm{m}^{2} \mathrm{~s}^{-1}$	
dynamic friction factor	$\mu,(f)$	$F_{\text {frict }}=\mu F_{\text {norm }}$	1	
sound energy flux	P, P_{a}	$P=\mathrm{d} E / \mathrm{d} t$	W	
acoustic factors, reflection	ρ	$\rho=P_{\mathrm{r}} / P_{0}$	1	8
absorption	$\alpha_{\mathrm{a}},(\alpha)$	$\alpha_{\mathrm{a}}=1-\rho$	1	9
transmission	τ	$\tau=P_{\text {tr }} / P_{0}$	1	8
dissipation	δ	$\delta=\alpha_{\mathrm{a}}-\tau$	1	

(6) In general these can be tensor quantities.
(7) d is the distance between the layers displaced by Δx.
(8) P_{0} is the incident sound energy flux, P_{r} the reflected flux and P_{tr} the transmitted flux.
(9) This definition is special to acoustics and is different from the usage in radiation, where the absorption factor corresponds to the acoustic dissipation factor.

2.3 ELECTRICITY AND MAGNETISM

The names and symbols recommended here are in agreement with those recommended by IUPAP [4] and ISO [5.e].

Name	Symbol	Definition	SI unit	Note
electric current	I, i		A	1
electric current density	$j, ~ J$	$I=\int \boldsymbol{j} \cdot \boldsymbol{e}_{\mathrm{n}} \mathrm{d} A$	$\mathrm{A} \mathrm{m}^{-}$	2
electric charge, quantity of electricity	Q	$Q=\int I \mathrm{~d} t$		1
charge density	ρ	$\rho=Q / V$	$\mathrm{C} \mathrm{m}^{-3}$	
surface density of charge	σ	$\sigma=Q / A$	C m ${ }^{-2}$	
electric potential	V, ϕ	$V=\mathrm{d} W / \mathrm{d} Q$	V, J C ${ }^{-1}$	
electric potential difference, electric tension	$U, \Delta V, \Delta \phi$	$U=V_{2}-V_{1}$,	
electromotive force	$\begin{aligned} & E, \\ & \left(E_{\mathrm{mf}}, E_{\mathrm{MK}}\right) \end{aligned}$	$E=\oint(\boldsymbol{F} / Q) \cdot \mathrm{d} \boldsymbol{r}$		3
electric field strength	E	$\boldsymbol{E}=\boldsymbol{F} / Q=-\nabla V$	Vm^{-1}	
electric flux	Ψ	$\Psi=\int \boldsymbol{D} \cdot \boldsymbol{e}_{\mathrm{n}} \mathrm{d} A$		2
electric displacement	D	$\boldsymbol{\nabla} \cdot \boldsymbol{D}=\rho$	C m ${ }^{-2}$	
capacitance	C	$C=Q / U$	F, C V ${ }^{-1}$	
permittivity	ε	$\boldsymbol{D}=\varepsilon \boldsymbol{E}$	F m ${ }^{-1}$	4
electric constant, permittivity of vacuum	ε_{0}	$\varepsilon_{0}=\mu_{0}{ }^{-1} c_{0}{ }^{-2}$	F m ${ }^{-1}$	5
relative permittivity	ε_{r}	$\varepsilon_{\mathrm{r}}=\varepsilon / \varepsilon_{0}$	1	6
dielectric polarization, electric polarization (electric dipole moment per volume)	P	$\boldsymbol{P}=\boldsymbol{D}-\varepsilon_{0} \boldsymbol{E}$	C m ${ }^{-2}$	
electric susceptibility	χ e	$\mathrm{e}_{\mathrm{e}}=\varepsilon_{\mathrm{r}}-1$	1	
1st hyper-susceptibility	$\chi \mathrm{e}^{(2)}$	$\chi_{\mathrm{e}}{ }^{(2)}=\varepsilon_{0}{ }^{-1}\left(\partial^{2} P / \partial E^{2}\right)$	$\mathrm{Cm} \mathrm{J}{ }^{-1}, \mathrm{~m} \mathrm{~V}^{-1}$	7
2nd hyper-susceptibility	$\chi \mathrm{e}^{(3)}$	$\chi{ }^{(3)}=\varepsilon_{0}{ }^{-1}\left(\partial^{3} P / \partial E^{3}\right)$	$\mathrm{C}^{2} \mathrm{~m}^{2} \mathrm{~J}^{-2}, \mathrm{~m}^{2} \mathrm{~V}^{-2}$	7

(1) The electric current I is a base quantity in ISQ.
(2) $e_{\mathrm{n}} \mathrm{d} A$ is a vector element of area (see Section 2.1, note 1, p. 13).
(3) The name electromotive force and the symbol emf are no longer recommended, since an electric potential difference is not a force (see Section 2.13, note 14, p. 71).
(4) ε can be a second-rank tensor.
(5) c_{0} is the speed of light in vacuum.
(6) This quantity was formerly called dielectric constant.
(7) The hyper-susceptibilities are the coefficients of the non-linear terms in the expansion of the magnitude P of the dielectric polarization \boldsymbol{P} in powers of the electric field strength \boldsymbol{E}, quite related to the expansion of the dipole moment vector described in Section 2.5, note 17, p. 24. In isotropic media, the expansion of the component i of the dielectric polarization is given by

$$
P_{i}=\varepsilon_{0}\left[\chi_{\mathrm{e}}{ }^{(1)} E_{i}+(1 / 2) \chi_{\mathrm{e}}{ }^{(2)} E_{i}^{2}+(1 / 6) \chi_{\mathrm{e}}{ }^{(3)} E_{i}^{3}+\cdots\right]
$$

where E_{i} is the i-th component of the electric field strength, and $\chi_{\mathrm{e}}{ }^{(1)}$ is the usual electric susceptibility χ_{e}, equal to $\varepsilon_{\mathrm{r}}-1$ in the absence of higher terms. In anisotropic media, $\chi_{\mathrm{e}}{ }^{(1)}, \chi_{\mathrm{e}}{ }^{(2)}$, and $\chi_{\mathrm{e}}{ }^{(3)}$ are tensors of rank 2, 3, and 4. For an isotropic medium (such as a liquid), or for a crystal with a centrosymmetric unit cell, $\chi_{e}{ }^{(2)}$ is zero by symmetry. These quantities are macroscopic

Name	Symbol	Definition	SI unit	Notes
electric dipole moment	\boldsymbol{p}, μ	$\boldsymbol{p}=\sum_{i} Q_{i} \boldsymbol{r}_{i}$	C m	8
magnetic flux density, magnetic induction	B	$\boldsymbol{F}=Q \boldsymbol{v} \times \boldsymbol{B}$	T	9
magnetic flux	Φ	$\Phi=\int \boldsymbol{B} \cdot \boldsymbol{e}_{n} \mathrm{~d} A$	Wb	2
magnetic field strength, magnetizing field strength	\boldsymbol{H}	$\nabla \times \boldsymbol{H}=\boldsymbol{j}$	A m ${ }^{-1}$	
permeability	μ	$\boldsymbol{B}=\mu \boldsymbol{H}$	$\mathrm{NA}^{-2}, \mathrm{H} \mathrm{m}^{-1}$	10
magnetic constant, permeability of vacuum	μ_{0}	$\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$	$\mathrm{H} \mathrm{m}^{-1}$	
relative permeability	μ_{r}	$\mu_{\mathrm{r}}=\mu / \mu_{0}$		
magnetization (magnetic dipole moment per volume)	M	$\boldsymbol{M}=\boldsymbol{B} / \mu_{0}-\boldsymbol{H}$	$\mathrm{A} \mathrm{m}^{-1}$	
magnetic susceptibility	$\chi, \kappa,\left(\chi_{\mathrm{m}}\right)$	$\chi=\mu_{\mathrm{r}}-1$	${ }^{1}{ }^{3} \mathrm{~mol}^{-1}$	11
molar magnetic susceptibility	$\chi \mathrm{m}$	$\chi_{\mathrm{m}}=V_{\mathrm{m}} \chi$	$\mathrm{m}^{3} \mathrm{~mol}^{-}$	
magnetic dipole moment electric resistance	$\begin{aligned} & m, \boldsymbol{\mu} \\ & R \end{aligned}$	$\begin{aligned} & E=-\boldsymbol{m} \cdot \boldsymbol{B} \\ & R=U / I \end{aligned}$	$\begin{aligned} & \mathrm{A} \mathrm{~m}^{2}, \mathrm{~J} \mathrm{~T} \\ & \Omega \end{aligned}$	12
conductance	G	$G=1 / R$	S	12
loss angle	δ	$\delta=\varphi_{U}-\varphi_{I}$	rad	13
reactance	X	$X=(U / I) \sin \delta$	Ω	
impedance, (complex impedance)	Z	$Z=R+\mathrm{i} X$	Ω	
admittance, (complex admittance)	Y	$Y=1 / Z$	S	
susceptance	B	$Y=G+\mathrm{i} B$	S	
resistivity	ρ	$\boldsymbol{E}=\rho \boldsymbol{j}$	$\Omega \mathrm{m}$	14
conductivity	κ, γ, σ	$j=\kappa E$	S m ${ }^{-1}$	14, 15
self-inductance	L	$E=-L(\mathrm{~d} I / \mathrm{d} t)$	$\mathrm{H}, \mathrm{V} \mathrm{s} \mathrm{A}{ }^{-1}$	
mutual inductance	M, L_{12}	$E_{1}=-L_{12}\left(\mathrm{~d} I_{2} / \mathrm{d} t\right)$	$\mathrm{H}, \mathrm{V} \mathrm{s} \mathrm{A}{ }^{-1}$	
magnetic vector potential	A	$\boldsymbol{B}=\boldsymbol{\nabla} \times \boldsymbol{A}$	$\mathrm{Wb} \mathrm{m}{ }^{-1}$	
Poynting vector	S	$S=\boldsymbol{E} \times \boldsymbol{H}$	W m ${ }^{-2}$	16

(7) (continued) properties and characterize a dielectric medium in the same way that the microscopic quantities polarizability (α) and hyper-polarizabilities (β, γ) characterize a molecule. For a homogeneous, saturated, isotropic dielectric medium of molar volume V_{m} one has $\alpha_{\mathrm{m}}=\varepsilon_{0} \chi_{\mathrm{e}} V_{\mathrm{m}}$, where $\alpha_{\mathrm{m}}=N_{\mathrm{A}} \alpha$ is the molar polarizability (Section 2.5, note 17, p. 24 and Section 2.7.2, p. 40).
(8) When a dipole is composed of two point charges Q and $-Q$ separated by a distance r, the direction of the dipole vector is taken to be from the negative to the positive charge. The opposite convention is sometimes used, but is to be discouraged. The dipole moment of an ion depends on the choice of the origin.
(9) This quantity should not be called "magnetic field".
(10) μ is a second-rank tensor in anisotropic materials.
(11) The symbol χ_{m} is sometimes used for magnetic susceptibility, but it should be reserved for molar magnetic susceptibility.
(12) In a material with reactance $R=(U / I) \cos \delta$, and $G=R /\left(R^{2}+X^{2}\right)$.
(13) φ_{I} and φ_{U} are the phases of current and potential difference.
(14) This quantity is a tensor in anisotropic materials.
(15) ISO gives only γ and σ, but not κ.
(16) This quantity is also called the Poynting-Umov vector.

2.4 QUANTUM MECHANICS AND QUANTUM CHEMISTRY

The names and symbols for quantities used in quantum mechanics and recommended here are in agreement with those recommended by IUPAP [4]. The names and symbols for quantities used mainly in the field of quantum chemistry have been chosen on the basis of the current practice in the field. Guidelines for the presentation of methodological choices in publications of computational results have been presented [20]. A list of acronyms used in theoretical chemistry has been published by IUPAC [21]; see also Chapter 9, p. 155.

Name	Symbol	Definition	SI unit	Notes
momentum operator	\widehat{p}	$\hat{p}=-\mathrm{i} \hbar \nabla$	$\mathrm{Js} \mathrm{m}^{-1}$	1
kinetic energy operator	\widehat{T}	$\widehat{T}=-\left(\hbar^{2} / 2 m\right) \nabla^{2}$	J	1
hamiltonian operator, hamiltonian	\widehat{H}	$\widehat{H}=\widehat{T}+\widehat{V}$		1
wavefunction, state function	Ψ, ψ, ϕ	$\widehat{H} \psi=E \psi$	$\left(\mathrm{m}^{-3 / 2}\right)$	2, 3
hydrogen-like wavefunction	$\psi_{n l m}(r, \theta, \phi)$	$\psi_{n l m}=R_{n l}(r) Y_{l m}(\theta, \phi)$	$\left(\mathrm{m}^{-3 / 2}\right)$	3
spherical harmonic function	$Y_{l m}(\theta, \phi)$	$Y_{l m}=N_{l\|m\|} P_{l}{ }^{\|m\|}(\cos \theta) e^{\mathrm{im} \mathrm{\phi}}$	1	4
probability density	P	$P=\psi^{*} \psi$	$\left(\mathrm{m}^{-3}\right)$	3, 5
charge density of electrons	ρ	$=-e P$	$\left(\mathrm{Cm}^{-3}\right)$	3, 5, 6
probability current density, probability flux	S	$\begin{aligned} S= & -(\mathrm{i} \hbar / 2 m) \times \\ & \left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right) \end{aligned}$	$\left(\mathrm{m}^{-2} \mathrm{~s}^{-1}\right)$	3
electric current density of electrons	j	$j=-e S$	$\left(\mathrm{A} \mathrm{m}^{-2}\right)$	3, 6
integration element	d τ	$\mathrm{d} \tau=\mathrm{d} x \mathrm{~d} y \mathrm{~d} z$	(varies)	
matrix element of operator \widehat{A}	$A_{i j},\langle i\| A\|j\rangle$	$A_{i j}=\int \psi_{i}{ }^{*} \widehat{A} \psi_{j} \mathrm{~d} \tau$	(varies)	7
expectation value of operator \widehat{A}	$\langle A\rangle, \bar{A}$	$\langle A\rangle=\int \psi^{*} \widehat{A} \psi \mathrm{~d} \tau$	(varies)	7

(1) The circumflex (or "hat"), ^, serves to distinguish an operator from an algebraic quantity. This definition applies to a coordinate representation, where $\boldsymbol{\nabla}$ denotes the nabla operator (see Section 4.2, p. 107).
(2) Capital and lower case ψ are commonly used for the time-dependent function $\Psi(x, t)$ and the amplitude function $\psi(x)$ respectively. Thus for a stationary state $\Psi(x, t)=\psi(x) \exp (-\mathrm{i} E t / \hbar)$.
(3) For the normalized wavefunction of a single particle in three-dimensional space the appropriate SI unit is given in parentheses. Results in quantum chemistry, however, are commonly expressed in terms of atomic units (see Section 3.9.2, p. 95 and Section 7.3 (iv), p. 145; and reference [22]). If distances, energies, angular momenta, charges and masses are all expressed as dimensionless ratios $r / a_{0}, E / E_{\mathrm{h}}$, etc., then all quantities are dimensionless.
(4) $P_{l}{ }^{|m|}$ denotes the associated Legendre function of degree l and order $|m| . N_{l|m|}$ is a normalization factor.
(5) ψ^{*} is the complex conjugate of ψ. For an anti-symmetrized n electron wavefunction $\Psi\left(r_{1}, \cdots, r_{n}\right)$, the total probability density of electrons is $\int_{2} \cdots \int_{n} \Psi^{*} \Psi \mathrm{~d} \tau_{2} \cdots \mathrm{~d} \tau_{n}$, where the integration extends over the coordinates of all electrons but one.
(6) $-e$ is the charge of an electron.
(7) The unit is the same as for the physical quantity A that the operator represents.

Name	Symbol	Definition	SI unit	Notes
hermitian conjugate of operator \widehat{A}	\widehat{A}^{\dagger}	$\left(A^{\dagger}\right)_{i j}=($	(varies)	
commutator of \widehat{A} and \widehat{B}	$[\widehat{A}, \widehat{B}],[\widehat{A}$	$[\widehat{A}, \widehat{B}]=\widehat{A} \widehat{B}$	(varies)	8
anticommutator of \widehat{A} and \widehat{B}	$[\widehat{A}, \widehat{B}]_{+}$	$[\widehat{A}, \widehat{B}]_{+}=\widehat{A}$	(varies)	8
angular momentum operators	see SPE	PY, Sectio		
spin wavefunction	$\alpha ; \beta$			9
Hückel molecular	ital theor			
atomic-orbital basis function	χ_{r}		$\mathrm{m}^{-3 / 2}$	3
molecular orbital	ϕ_{i}	$\phi_{i}=\sum_{r} \chi_{r}$	$\mathrm{m}^{-3 / 2}$	3, 10
coulomb integral	$H_{r r}, \alpha_{r}$	$H_{r r}=\int \chi_{r}$	J	3, 10, 11
resonance integral	$H_{r s}, \beta_{r s}$	$H_{r s}=\int \chi_{r}$	J	3, 10, 12
energy parameter	x	$-x=(\alpha-$	1	13
overlap integral	$S_{r s}, S$	$S_{r s}=\int \chi_{r}$	1	10
charge order	q_{r}	$q_{r}=\sum_{i=1}^{n} b_{i} c$	1	14, 15
bond order	$p_{\text {rs }}$	$p_{r s}=\sum b_{i}$	1	15,16

(8) The unit is the same as for the product of the physical quantities A and B.
(9) The spin wavefunctions of a single electron, α and β, are defined by the matrix elements of the z component of the spin angular momentum, \widehat{s}_{z}, by the relations $\langle\alpha| \widehat{s}_{z}|\alpha\rangle=+(1 / 2),\langle\beta| \widehat{s}_{z}|\beta\rangle=$ $-(1 / 2),\langle\beta| \widehat{s}_{z}|\alpha\rangle=\langle\alpha| \widehat{s}_{z}|\beta\rangle=0$ in units of \hbar. The total electron spin wavefunctions of an atom with many electrons are denoted by Greek letters α, β, γ, etc. according to the value of $\sum m_{s}$, starting from the greatest down to the least.
(10) \widehat{H} is an effective hamiltonian for a single electron, i and j label the molecular orbitals, and r and s label the atomic orbitals. In Hückel MO theory, $H_{r s}$ is taken to be non-zero only for bonded pairs of atoms r and s, and all $S_{r s}$ are assumed to be zero for $r \neq s$.
(11) Note that the name "coulomb integral" has a different meaning in HMO theory (where it refers to the energy of the orbital χ_{r} in the field of the nuclei) from Hartree-Fock theory discussed below (where it refers to a two-electron repulsion integral).
(12) This expression describes a bonding interaction between atomic orbitals r and s. For an anti-bonding interaction, the corresponding resonance integral is given by the negative value of the resonance integral for the bonding interaction.
(13) In the simplest application of Hückel theory to the π electrons of planar conjugated hydrocarbons, α is taken to be the same for all carbon atoms, and β to be the same for all bonded pairs of carbon atoms; it is then customary to write the Hückel secular determinant in terms of the dimensionless parameter x.
(14) $-e q_{r}$ is the electronic charge on atom $r . q_{r}$ specifies the contribution of all $n \pi$ electrons to the total charge at center r, with $\sum q_{r}=n$.
(15) b_{i} gives the number of electrons which occupy a given orbital energy level ε_{i}; for non-degenerate orbitals, b_{i} can take the values 0,1 , or 2 .
(16) p_{r} is the bond order between atoms r and s.

2.4.1 Ab initio Hartree-Fock self-consistent field theory (ab initio SCF)

Results in quantum chemistry are typically expressed in atomic units (see Section 3.9.1, p. 94 and Section 7.3 (iv), p. 145). In the remaining tables of this section all lengths, energies, masses, charges and angular momenta are expressed as dimensionless ratios to the corresponding atomic units, a_{0}, $E_{\mathrm{h}}, m_{\mathrm{e}}, e$ and \hbar respectively. Thus all quantities become dimensionless, and the SI unit column is therefore omitted.

Name	Symbol	Definition	Notes		
molecular orbital	$\phi_{i}(\mu)$		17		
molecular spin orbital	$\begin{aligned} & \phi_{i}(\mu) \alpha(\mu) ; \\ & \phi_{i}(\mu) \beta(\mu) \end{aligned}$		17		
total wavefunction	Ψ	$\Psi=(n!)^{-1 / 2}\left\\|\phi_{i}(\mu)\right\\|$	17, 18		
core hamiltonian of a single electron	$\widehat{H}_{\mu}{ }^{\text {core }}$	$\widehat{H}_{\mu}=-(1 / 2) \nabla_{\mu}^{2}-\sum_{A} Z_{A} / r_{\mu} A$	17, 19		
one-electron integrals: expectation value of the core hamiltonian	$H_{i i}$	$H_{i i}=\int \phi_{i}{ }^{*}(1) \widehat{H}_{1}{ }^{\text {core }} \phi_{i}(1) \mathrm{d} \tau_{1}$	17, 19		
two-electron repulsion integrals:					
coulomb integral	$J_{i j}$	$J_{i j}=\iint \phi_{i}{ }^{*}(1) \phi_{j}{ }^{*}(2) \frac{1}{r_{12}} \phi_{i}(1) \phi_{j}(2) \mathrm{d} \tau_{1} \mathrm{~d} \tau_{2}$	17, 20		
exchange integral	$K_{i j}$	$K_{i j}=\iint \phi_{i}{ }^{*}(1) \phi_{j}{ }^{*}(2) \frac{1}{r_{12}} \phi_{j}(1) \phi_{i}(2) \mathrm{d} \tau_{1} \mathrm{~d} \tau_{2}$	17, 20		
one-electron orbital energy	ε_{i}	$\varepsilon_{i}=H_{i i}+\sum\left(2 J_{i j}-K_{i j}\right)$	17, 21		
total electronic energy	E	$\begin{aligned} E & =2 \sum_{i} H_{i i}^{j}+\sum_{i} \sum_{j}\left(2 J_{i j}-K_{i j}\right) \\ & =\sum_{i}\left(\varepsilon_{i}+H_{i i}\right) \end{aligned}$	17, 21, 22		
coulomb operator	\widehat{J}_{i}	$\widehat{J}_{i} \phi_{j}(2)=\left\langle\phi_{i}(1)\right\| \frac{1}{r_{12}}\left\|\phi_{i}(1)\right\rangle \phi_{j}(2)$	17		
exchange operator	\widehat{K}_{i}	$\widehat{K}_{i} \phi_{j}(2)=\left\langle\phi_{i}(1)\right\| \frac{1}{r_{12}}\left\|\phi_{j}(1)\right\rangle \phi_{i}(2)$	17		
Fock operator	\widehat{F}	$\widehat{F}=\widehat{H}^{\text {core }}+\sum_{i}\left(2 \widehat{J}_{i}-\widehat{K}_{i}\right)$	17, 21, 23		

(17) The indices i and j label the molecular orbitals, and either μ or the numerals 1 and 2 label the electron coordinates.
(18) The double vertical bars denote an anti-symmetrized product of the occupied molecular spin orbitals $\phi_{i} \alpha$ and $\phi_{i} \beta$ (sometimes denoted ϕ_{i} and $\bar{\phi}_{i}$); for a closed-shell system Ψ would be a normalized Slater determinant. ($n!)^{-1 / 2}$ is the normalization factor and n the number of electrons.
(19) Z_{A} is the proton number (charge number) of nucleus A , and $r_{\mu \mathrm{A}}$ is the distance of electron μ from nucleus A. $H_{i i}$ is the energy of an electron in orbital ϕ_{i} in the field of the core.
(20) The inter-electron repulsion integral is written in various shorthand notations: In $J_{i j}=\langle i j \mid i j\rangle$ the first and third indices refer to the index of electron 1 and the second and fourth indices to electron 2. In $J_{i j}=\left(i^{*} i \mid j^{*} j\right)$, the first two indices refer to electron 1 and the second two indices to electron 2. Usually the functions are real and the stars are omitted. The exchange integral is written in various shorthand notations with the same index convention as described: $K_{i j}=\langle i j \mid j i\rangle$ or $K_{i j}=\left(i^{*} j \mid j^{*} i\right)$.
(21) These relations apply to closed-shell systems only, and the sums extend over the occupied molecular orbitals.
(22) The sum over j includes the term with $j=i$, for which $J_{i i}=K_{i i}$, so that this term in the sum simplifies to give $2 J_{i i}-K_{i i}=J_{i i}$.

2.4.2 Hartree-Fock-Roothaan SCF theory, using molecular orbitals expanded as linear combinations of atomic-orbital basis functions (LCAO-MO theory)

(Notes continued)
(23) The Hartree-Fock equations read $\left(\widehat{F}-\varepsilon_{j}\right) \phi_{j}=0$. Note that the definition of the Fock operator involves all of its eigenfunctions ϕ_{i} through the coulomb and exchange operators, \widehat{J}_{i} and \widehat{K}_{i}.
(24) The indices r and s label the basis functions. In numerical computations the basis functions are either taken as Slater-type orbitals (STO) or as Gaussian-type orbitals (GTO). An STO basis function in spherical polar coordinates has the general form $\chi(r, \theta, \phi)=N r^{n-1} \exp \left(-\zeta_{n l} r\right) Y_{l m}(\theta, \phi)$, where $\zeta_{n l}$ is a shielding parameter representing the effective charge in the state with quantum numbers n and l. GTO functions are typically expressed in cartesian space coordinates, in the form $\chi(x, y, z)=N x^{a} y^{b} z^{c} \exp \left(-\alpha r^{2}\right)$. Commonly, a linear combination of such functions with varying exponents α is used in such a way as to model an STO. N denotes a normalization factor.
(25) For closed-shell species with two electrons per occupied orbital. The sum extends over all occupied molecular orbitals. $P_{r s}$ may also be called the bond order between atoms r and s.
(26) The contracted notation for two-electron integrals over the basis functions, ($r s \mid t u$), is based on the same convention outlined in note 20 .
(27) Here the two-electron integral is expressed in terms of integrals over the spatial atomic-orbital basis functions. The matrix elements $H_{i i}, J_{i j}$, and $K_{i j}$ may be similarly expressed in terms of integrals over the spatial atomic-orbital basis functions according to the following equations:

$$
\begin{aligned}
H_{i i} & =\sum_{r} \sum_{s} c_{r i}{ }^{*} c_{s i} H_{r s} \\
J_{i j} & =\left(i^{*} i \mid j^{*} j\right)=\sum_{r} \sum_{s} \sum_{t} \sum_{u} c_{r i}{ }^{*} c_{s i} c_{t j}{ }^{*} c_{u j}\left(r^{*} s \mid t^{*} u\right) \\
K_{i j} & =\left(i^{*} j \mid j^{*} i\right)=\sum_{r} \sum_{s} \sum_{t} \sum_{u} c_{r i}{ }^{*} c_{s i} c_{t j}{ }^{*} c_{u j}\left(r^{*} u \mid t^{*} s\right)
\end{aligned}
$$

(28) The Hartree-Fock-Roothaan SCF equations, expressed in terms of the matrix elements of the Fock operator $F_{r s}$, and the overlap matrix elements $S_{r s}$, take the form:

$$
\sum_{s}\left(F_{r s}-\varepsilon_{i} S_{r s}\right) c_{s i}=0
$$

2.5 ATOMS AND MOLECULES

The names and symbols recommended here are in agreement with those recommended by IUPAP [4] and ISO [5.i]. Additional quantities and symbols used in atomic, nuclear and plasma physics can be found in $[4,5 . j]$.

Name	Symbol	Definition	SI unit	Notes
nucleon number, mass number	A		1	
proton number, atomic number	Z			
neutron number	N	$N=A-Z$	1	
electron mass	$m_{\text {e }}$		kg	1, 2
mass of atom, atomic mass	m_{a}, m		kg	
atomic mass constant	m_{u}	$m_{\mathrm{u}}=m_{\mathrm{a}}\left({ }^{12} \mathrm{C}\right) / 12$	kg	1, 3
mass excess	Δ	$\Delta=m_{\mathrm{a}}-A m_{\mathrm{u}}$	kg	
elementary charge	e	proton charge	C	2
Planck constant	h		J s	
Planck constant divided by 2π	\hbar	$\hbar=h / 2 \pi$	J s	2
Bohr radius	a_{0}	$a_{0}=4 \pi \varepsilon_{0} \hbar^{2} / m_{\mathrm{e}} e^{2}$	m	2
Hartree energy	$E_{\text {h }}$	$E_{\mathrm{h}}=\hbar^{2} / m_{\mathrm{e}} a_{0}^{2}$	J	2
Rydberg constant	R_{∞}	$R_{\infty}=E_{\mathrm{h}} / 2 h c$	m^{-1}	
fine-structure constant	α	$\alpha=e^{2} / 4 \pi \varepsilon_{0} \hbar c$	1	
ionization energy	E_{i}, I		J	4
electron affinity	$E_{\text {ea }}, A$		J	4
electronegativity	χ	$\chi=(1 / 2)\left(E_{\mathrm{i}}+E_{\text {ea }}\right)$	J	5
dissociation energy	$E_{\text {d }}, D$		J	
from the ground state	D_{0}		J	6
from the potential minimum	$D_{\text {e }}$		J	6

(1) Analogous symbols are used for other particles with subscripts: p for proton, n for neutron, a for atom, N for nucleus, etc.
(2) This quantity is also used as an atomic unit (see Section 3.9.1, p. 94 and Section 7.3 (iv), p. 145).
(3) m_{u} is equal to the unified atomic mass unit, with symbol u, i.e. $m_{\mathrm{u}}=1 \mathrm{u}$ (see Section 3.7, p. 92). The name dalton, with symbol Da, is used as an alternative name for the unified atomic mass unit [23].
(4) The ionization energy is frequently called the ionization potential $\left(I_{\mathrm{p}}\right)$. The electron affinity is the energy needed to detach an electron.
(5) The concept of electronegativity was introduced by L. Pauling as the power of an atom in a molecule to attract electrons to itself. There are several ways of defining this quantity [24]. The one given in the table has a clear physical meaning of energy and is due to R. S. Mulliken. The most frequently used scale, due to Pauling, is based on bond dissociation energies E_{d} in eV and it is relative in the sense that the values are dimensionless and that only electronegativity differences are defined. For atoms A and B

$$
\chi_{\mathrm{r}, \mathrm{~A}}-\chi_{\mathrm{r}, \mathrm{~B}}=\sqrt{\frac{E_{\mathrm{d}}(\mathrm{AB})}{\mathrm{eV}}-\frac{1}{2} \frac{\left[E_{\mathrm{d}}(\mathrm{AA})+E_{\mathrm{d}}(\mathrm{BB})\right]}{\mathrm{eV}}}
$$

where χ_{r} denotes the Pauling relative electronegativity. The scale is chosen so as to make the relative electronegativity of hydrogen $\chi_{\mathrm{r}, \mathrm{H}}=2.1$. There is a difficulty in choosing the sign of the square root, which determines the sign of $\chi_{\mathrm{r}, \mathrm{A}}-\chi_{\mathrm{r}, \mathrm{B}}$. Pauling made this choice intuitively.
(6) The symbols D_{0} and D_{e} are used for dissociation energies of diatomic and polyatomic molecules.

(7) For an electron in the central coulomb field of an infinitely heavy nucleus of atomic number Z.
(8) Magnetic moments of specific particles may be denoted by subscripts, e.g. $\mu_{\mathrm{e}}, \mu_{\mathrm{p}}, \mu_{\mathrm{n}}$ for an electron, a proton, and a neutron. Tabulated values usually refer to the maximum expectation value of the z component. Values for stable nuclei are given in Section 6.3, p. 121.
(9) The gyromagnetic ratio for a nucleus is $\gamma_{\mathrm{N}}=g_{\mathrm{N}} \mu_{\mathrm{N}} / \hbar$.
(10) For historical reasons, $g_{\mathrm{e}}>0 . e$ is the (positive) elementary charge, therefore $\gamma_{\mathrm{e}}<0$. For nuclei, γ_{N} and g_{N} have the same sign. A different sign convention for the electronic g-factor is discussed in [25].
(11) This is a vector quantity with magnitude ω_{L}. This quantity is sometimes called Larmor circular frequency.
(12) These quantities are used in the context of saturation effects in spectroscopy, particularly spin-resonance spectroscopy (see Section 2.6, p. 27-28).
(13) See Section 2.6, note 9, p. 26.
(14) The quadrupole moment of a molecule may be represented either by the tensor \boldsymbol{Q}, defined by an integral over the charge density ρ :

$$
Q_{\alpha \beta}=\int r_{\alpha} r_{\beta} \rho \mathrm{d} V
$$

in which α and β denote x, y or z, or by the tensor $\boldsymbol{\Theta}$ of trace zero defined by

$$
\Theta_{\alpha \beta}=(1 / 2) \int\left(3 r_{\alpha} r_{\beta}-\delta_{\alpha \beta} r^{2}\right) \rho \mathrm{d} V=(1 / 2)\left[3 Q_{\alpha \beta}-\delta_{\alpha \beta}\left(Q_{x x}+Q_{y y}+Q_{z z}\right)\right]
$$

$V^{\prime \prime}$ is the second derivative of the electronic potential:

$$
V_{\alpha \beta}{ }^{\prime \prime}=-q_{\alpha \beta}=\partial^{2} V / \partial \alpha \partial \beta
$$

The contribution to the potential energy is then given by

$$
E_{\mathrm{p}}=(1 / 2) \boldsymbol{Q}: \boldsymbol{V}^{\prime \prime}=(1 / 2) \sum_{\alpha} \sum_{\beta} Q_{\alpha \beta} V_{\alpha \beta^{\prime \prime}}
$$

Name	Symbol	Definition	SI unit	Notes
quadrupole moment of a nucleus	$e Q$	$e Q=2\left\langle\Theta_{z z}\right\rangle$	C m ${ }^{2}$	15
electric field gradient tensor	q	$q_{\alpha \beta}=-\partial^{2} V / \partial \alpha \partial \beta$	V m ${ }^{-2}$	
quadrupole interaction energy tensor	χ	$\chi_{\alpha \beta}=e Q q_{\alpha \beta}$	J	16
electric polarizability of a molecule	α	$\alpha_{a b}=\partial p_{a} / \partial E_{b}$	$\mathrm{C}^{2} \mathrm{~m}^{2} \mathrm{~J}^{-1}$	17
1st hyper-polarizability	β	$\beta_{a b c}=\partial^{2} p_{a} / \partial E_{b} \partial E_{c}$	$\mathrm{C}^{3} \mathrm{~m}^{3} \mathrm{~J}^{-2}$	17
2nd hyper-polarizability	γ	$\gamma_{a b c d}=\partial^{3} p_{a} / \partial E_{b} \partial E_{c} \partial E_{d}$	$\mathrm{C}^{4} \mathrm{~m}^{4} \mathrm{~J}^{-3}$	17
activity (of a radioactive substance)	A	$A=-\mathrm{d} N_{\mathrm{B}} / \mathrm{d} t$	Bq	18
decay (rate) constant, disintegration (rate) constant	λ, k	$A=\lambda N_{\mathrm{B}}$	s^{-1}	18
half life	$t_{1 / 2}, T_{1 / 2}$	$N_{\mathrm{B}}\left(t_{1 / 2}\right)=N_{\mathrm{B}}(0) / 2$	S	18, 19
mean life, lifetime	τ	$\tau=1 / \lambda$	S	19
level width	Γ	$\Gamma=\hbar / \tau$	J	
disintegration energy	Q		J	
cross section	σ		m^{2}	
electroweak charge of a nucleus	Q_{W}	$Q_{\mathrm{W}} \approx Z\left(1-4 \sin ^{2} \theta_{\mathrm{W}}\right)-N$	1	20

(15) Nuclear quadrupole moments are conventionally defined in a different way from molecular quadrupole moments. Q has the dimension of an area and e is the elementary charge. $e Q$ is taken to be twice the maximum expectation value of the $z z$ tensor element (see note 14). The values of Q for some nuclei are listed in Section 6.3, p. 121.
(16) The nuclear quadrupole interaction energy tensor χ is usually quoted in MHz , corresponding to the value of $e Q q / h$, although the h is usually omitted.
(17) The polarizability $\boldsymbol{\alpha}$ and the hyper-polarizabilities $\boldsymbol{\beta}, \boldsymbol{\gamma}, \cdots$ are the coefficients in the expansion of the dipole moment \boldsymbol{p} in powers of the electric field strength \boldsymbol{E} (see Section 2.3, note 7, p. 16). The expansion of the component a is given by

$$
p_{a}=p_{a}^{(0)}+\sum_{b} \alpha_{a b} E_{b}+(1 / 2) \sum_{b c} \beta_{a b c} E_{b} E_{c}+(1 / 6) \sum_{b c d} \gamma_{a b c d} E_{b} E_{c} E_{d}+\cdots
$$

in which $\alpha_{a b}, \beta_{a b c}$, and $\gamma_{a b c d}$ are elements of the tensors $\boldsymbol{\alpha}, \boldsymbol{\beta}$, and $\boldsymbol{\gamma}$ of rank 2, 3, and 4, respectively. The components of these tensors are distinguished by the subscript indices $a b c \cdots$, as indicated in the definitions, the first index a always denoting the component of p, and the subsequent indices the components of the electric field. The polarizability and the hyper-polarizabilities exhibit symmetry properties. Thus $\boldsymbol{\alpha}$ is commonly a symmetric tensor, and all components of $\boldsymbol{\beta}$ are zero for a molecule with a centre of symmetry, etc. Values of the polarizability are commonly quoted as the value $\alpha / 4 \pi \varepsilon_{0}$, which is a volume. The value is commonly expressed in the unit \AA^{3} (\AA should not be used, see Section 2.6, note 11, p. 27) or in the unit $a_{0}{ }^{3}$ (atomic units, see Section 3.9.1, p. 94). Similar comments apply to the hyper-polarizabilities with $\beta /\left(4 \pi \varepsilon_{0}\right)^{2}$ in units of $a_{0}{ }^{5} e^{-1}$, and $\gamma /\left(4 \pi \varepsilon_{0}\right)^{3}$ in units of $a_{0}{ }^{7} e^{-2}$, etc.
(18) N_{B} is the number of decaying entities $\mathrm{B}\left(1 \mathrm{~Bq}=1 \mathrm{~s}^{-1}\right.$, see Section 3.4, p. 89).
(19) Half lives and mean lives are commonly given in years (unit a), see Section 7.2, note 4, p. 137. $t_{1 / 2}=\tau \ln 2$ for exponential decays.
(20) The electroweak charge of a nucleus is approximately given by the neutron number N and the proton number Z with the weak mixing angle θ_{W} (see Chapter 5, p. 111). It is important in calculations of atomic and molecular properties including the weak nuclear interaction [26].

2.6 SPECTROSCOPY

This section has been considerably extended compared with the original Manual [1.a-1.c] and with the corresponding section in the IUPAP document [4]. It is based on the recommendations of the ICSU Joint Commission for Spectroscopy [27, 28] and current practice in the field which is well represented in the books by Herzberg [29-31]. The IUPAC Commission on Molecular Structure and Spectroscopy has also published recommendations which have been taken into account [32-43].

Name	Symbol	Definition	SI unit	Notes
total term	T	$T=E_{\text {tot }} / h c$	m^{-1}	1, 2
transition wavenumber	$\widetilde{\nu}$	$\widetilde{\nu}=T^{\prime}-T^{\prime \prime}$	m^{-1}	,
transition frequency	ν	$\nu=\left(E^{\prime}-E^{\prime \prime}\right) / h$	Hz	
electronic term	$T_{\text {e }}$	$T_{\mathrm{e}}=E_{\mathrm{e}} / h c$	m^{-1}	1, 2
vibrational term	G	$G=E_{\text {vib }} / h c$	m^{-1}	1, 2
rotational term	F	$F=E_{\text {rot }} / h c$	m^{-1}	1, 2
spin-orbit coupling constant	A	$\left.T_{\text {so }}=A<\widehat{\boldsymbol{L}} \cdot \widehat{\boldsymbol{S}}\right\rangle$	m^{-1}	1, 3
principal moments of inertia	$I_{A} ; I_{B} ; I_{C}$	$I_{A} \leqslant I_{B} \leqslant I_{C}$	$\mathrm{kg} \mathrm{m}{ }^{2}$	
$\begin{array}{ccccc}\text { rotational constants, } \\ \text { in wavenumber }\end{array} \quad \widetilde{A} ; \widetilde{B} ; \widetilde{C} \quad \widetilde{A}=h / 8 \pi^{2} c I_{A} \quad \mathrm{~m}^{-1} \quad 1,2$				
in frequency	$\begin{aligned} & A ; B ; C \\ & A ; B ; C \end{aligned}$	$\tilde{A}=h / 8 \pi^{2} c I_{A}$ $A=h / 8 \pi^{2} I_{A}$		1,2
inertial defect	Δ	$\Delta=I_{C}-I_{A}-I_{B}$	$\mathrm{kg} \mathrm{m}{ }^{2}$	
asymmetry parameter	κ	$A-C$	1	4
centrifugal distortion constants,				
S reduction	$D_{J} ; D_{J K} ; D_{K} ; d_{1} ; d_{2}$		m^{-1}	5
A reduction	$\Delta_{J} ; \Delta_{J K} ; \Delta_{K} ; \delta_{J} ; \delta_{K}$		m^{-1}	5
harmonic vibration wavenumber	$\omega_{\mathrm{e}} ; \omega_{r}$		m^{-1}	6
vibrational anharmonicity constant	$\omega_{\mathrm{e}} x_{\mathrm{e}} ; x_{r s} ; g_{t t^{\prime}}$		m^{-1}	6

(1) In spectroscopy the unit cm^{-1} is almost always used for the quantity wavenumber, and term values and wavenumbers always refer to the reciprocal wavelength of the equivalent radiation in vacuum. The symbol c in the definition $E / h c$ refers to the speed of light in vacuum. Because "wavenumber" is not a number ISO suggests the use of repetency in parallel with wavenumber [5,6]. The use of the word "wavenumber" in place of the unit cm^{-1} must be avoided.
(2) Term values and rotational constants are sometimes defined in wavenumber units (e.g. $T=E / h c$), and sometimes in frequency units (e.g. $T=E / h$). When the symbol is otherwise the same, it is convenient to distinguish wavenumber quantities with a tilde (e.g. $\widetilde{\nu}, \widetilde{T}, \widetilde{A}, \widetilde{B}, \widetilde{C}$ for quantities defined in wavenumber units), although this is not a universal practice.
(3) $\widehat{\boldsymbol{L}}$ and $\widehat{\boldsymbol{S}}$ are electron orbital and electron spin operators, respectively.
(4) The Wang asymmetry parameters are also used: for a near prolate top $b_{\mathrm{p}}=(C-B) /(2 A-B-C)$, and for a near oblate top $b_{\mathrm{o}}=(A-B) /(2 C-A-B)$.
(5) S and A stand for the symmetric and asymmetric reductions of the rotational hamiltonian respectively; see [44] for more details on the various possible representations of the centrifugal distortion constants.
(6) For a diatomic molecule: $G(v)=\omega_{\mathrm{e}}\left(v+\frac{1}{2}\right)-\omega_{\mathrm{e}} x_{\mathrm{e}}\left(v+\frac{1}{2}\right)^{2}+\cdots$. For a polyatomic molecule the $3 N-6$ vibrational modes ($3 N-5$ if linear) are labeled by the indices r, s, t, \cdots, or i, j, k, \cdots. The index r is usually assigned to be increasing with descending wavenumber, symmetry species by

Name	Symbol	Definition	SI unit	Notes
vibrational quantum numbers	$v_{r} ; l_{t}$		1	6
vibrational fundamental wavenumber	$\widetilde{\nu}_{r}, \widetilde{\nu}_{r}^{0}, \nu_{r}$	$\widetilde{\nu}_{r}=T\left(v_{r}\right.$	m^{-}	6
Coriolis ζ-constant angular momentum quantum numbers	$\begin{aligned} & \zeta_{r s}^{\alpha} \\ & \text { see Section 2.6.1, p. } 30 \end{aligned}$			
degeneracy, statistical weight	$g, d, \beta \quad 10$			
electric dipole moment of a molecule	$\boldsymbol{p}, \boldsymbol{\mu}$	$E_{\mathrm{p}}=-\boldsymbol{p}$	C m	9
transition dipole moment of a molecule	$\boldsymbol{M}, \boldsymbol{R}$	$\boldsymbol{M}=\int \psi$	C m	9, 10

(6) (continued) symmetry species starting with the totally symmetric species. The index t is kept for degenerate modes. The vibrational term formula is

$$
G(v)=\sum_{r} \omega_{r}\left(v_{r}+d_{r} / 2\right)+\sum_{r \leqslant s} x_{r s}\left(v_{r}+d_{r} / 2\right)\left(v_{s}+d_{s} / 2\right)+\sum_{t \leqslant t^{\prime}} g_{t t^{\prime}} l_{t} l_{t^{\prime}}+\cdots
$$

Another common term formula is defined with respect to the vibrational ground state

$$
T(v)=\sum_{i} v_{i} \widetilde{\nu}_{i}^{\prime}+\sum_{r \leqslant s} x_{r s}^{\prime} v_{r} v_{s}+\sum_{t \leqslant t^{\prime}} g_{t t^{\prime}} l_{t} l_{t^{\prime}}+\cdots
$$

these being commonly used as the diagonal elements of effective vibrational hamiltonians.
(7) Frequently the Coriolis coupling constants $\xi_{\alpha} v^{\prime} v$ with units of cm^{-1} are used as effective hamiltonian constants $(\alpha=x, y, z)$. For two fundamental vibrations with harmonic wavenumbers ω_{r} and ω_{s} these are connected with $\zeta_{r s}{ }^{\alpha}$ by the equation $\left(v_{r}=1\right.$ and $\left.v_{s}=1\right)$

$$
\xi_{\alpha} v^{\prime} v=\widetilde{B}_{\alpha} \zeta_{r s}^{\alpha}\left[\sqrt{\omega_{s} / \omega_{r}}+\sqrt{\omega_{r} / \omega_{s}}\right]
$$

where \widetilde{B}_{α} is the α rotational constant. A similar equation applies with B_{α} if $\xi_{\alpha}{ }^{v^{\prime} v}$ is defined as a quantity with frequency units.
(8) d is usually used for vibrational degeneracy, and β for nuclear spin degeneracy.
(9) E_{p} is the potential energy of a dipole with electric dipole moment \boldsymbol{p} in an electric field of strength
\boldsymbol{E}. Molecular dipole moments are commonly expressed in the non-SI unit debye, where
$1 \mathrm{D} \approx 3.33564 \times 10^{-30} \mathrm{C} \mathrm{m}$. The SI unit C m is inconvenient for expressing molecular dipole moments, which results in the continued use of the deprecated debye (D). A convenient alternative is to use the atomic unit, e a_{0}. Another way of expressing dipole moments is to quote the electric dipole lengths, $l_{p}=p / e$, analogous to the way the nuclear quadrupole areas are quoted (see Section 2.5 , notes 14 and 15 , p. 23 and 24 and Section 6.3 , p. 121). This gives the distance between two elementary charges of the equivalent dipole and conveys a clear picture in relation to molecular dimensions (see also Section 2.3, note 8, p. 17).

Examples	Dipole moment			Dipole length
		SI		
	$p / \mathrm{C} \mathrm{m}$	p / D	$p / e a_{0}$	l_{p} / pm
HCl	3.60×10^{-30}	1.08	0.425	22.5
$\mathrm{H}_{2} \mathrm{O}$	6.23×10^{-30}	1.87	0.736	38.9
NaCl	3.00×10^{-29}	9.00	3.54	187

(10) For quantities describing line and band intensities see Section 2.7, p. 34-41.

(11) Interatomic (internuclear) distances and vibrational displacements are commonly expressed in the non-SI unit ångström, where $1 \AA=10^{-10} \mathrm{~m}=0.1 \mathrm{~nm}=100 \mathrm{pm}$. \AA should not be used.
(12) The various slightly different ways of representing interatomic distances, distinguished by subscripts, involve different vibrational averaging contributions; they are discussed in [45], where the geometrical structures of many free molecules are listed. Only the equilibrium distance r_{e} is isotopically invariant, to a good approximation. The effective distance parameter r_{0} is estimated from the rotational constants for the ground vibrational state and has a more complicated physical significance for polyatomic molecules.
(13) Force constants are commonly expressed in mdyn $\AA^{-1}=a J \AA^{-2}$ for stretching coordinates, mdyn $\AA=$ aJ for bending coordinates, and $m d y n=a J \AA^{-1}$ for stretch-bend interactions. \AA should not be used (see note 11). See [46] for further details on definitions and notation for force constants.
(14) The force constants in dimensionless normal coordinates are usually defined in wavenumber units by the equation $V / h c=\sum \phi_{r s t \ldots} q_{r} q_{s} q_{t} \cdots$, where the summation over the normal coordinate indices r, s, t, \cdots is unrestricted.
(15) The magnitude of γ is obtained from the magnitudes of the magnetic dipole moment μ and the angular momentum (in ESR: electron spin S for a Σ-state, $L=0$; in NMR: nuclear spin \boldsymbol{I}).
(16) This gives an effective g-factor for a single spin $(S=1 / 2)$ in an external static field (see Section 2.5 , note 10 , p. 23).
(17) \hat{H}_{hfs} is the hyperfine coupling hamiltonian. $\widehat{\boldsymbol{S}}$ is the electron spin operator with quantum number S (see Section 2.6.1, p. 30). The coupling constants a are usually quoted in MHz, but they are sometimes quoted in magnetic induction units (G or T) obtained by dividing by the conversion factor $g \mu_{\mathrm{B}} / h$, which has the SI unit $\mathrm{Hz} / \mathrm{T} ; g_{\mathrm{e}} \mu_{\mathrm{B}} / h \approx 28.025 \mathrm{GHz}^{-1}\left(=2.8025 \mathrm{MHz} \mathrm{G}{ }^{-1}\right)$, where g_{e} is the g-factor for a free electron. If in liquids the hyperfine coupling is isotropic, the coupling

(17) (continued) constant is a scalar a. In solids the coupling is anisotropic, and the coupling constant is a 3×3 tensor \boldsymbol{T}. Similar comments apply to the g-factor and to the analogous NMR parameters. A convention for the g-factor has been proposed, in which the sign of g is positive when the dipole moment is parallel to its angular momentum and negative, when it is anti parallel. Such a choice would require the g-factors for the electron orbital and spin angular momenta to be negative [25] (see Section 2.5, note 10, p. 23).
(18) The observing $\left(\boldsymbol{B}_{1}\right)$ and irradiating $\left(\boldsymbol{B}_{2}\right)$ radiofrequency flux densities are associated with frequencies ν_{1}, ν_{2} and with nutation angular frequencies Ω_{1}, Ω_{2} (around $\boldsymbol{B}_{1}, \boldsymbol{B}_{2}$, respectively). They are defined through $\Omega_{1}=-\gamma \boldsymbol{B}_{1}$ and $\Omega_{2}=-\gamma \boldsymbol{B}_{2}$ (see Section 2.3, notes 8 and 9, p. 17).
(19) The units of interaction strengths are Hz . In the context of relaxation the interaction strengths should be converted to angular frequency units ($\mathrm{rad} \mathrm{s}^{-1}$, but commonly denoted s^{-1}, see note 25). (20) $\widehat{\boldsymbol{I}}_{\mathrm{A}}, \widehat{\boldsymbol{S}}_{\mathrm{A}}$ have components $\widehat{I}_{\mathrm{A} x}, \widehat{I}_{\mathrm{A} y}, \widehat{I}_{\mathrm{A} z}$ or $\widehat{S}_{\mathrm{A} x}, \widehat{S}_{\mathrm{A} y}, \widehat{S}_{\mathrm{A} z}$, respectively. For another way of defining angular momentum operators with unit J s (see Section 2.6.1, p. 30).
(21) Parentheses may be used to indicate the species of the nuclei coupled, e.g. $J\left({ }^{13} \mathrm{C},{ }^{1} \mathrm{H}\right)$ or, additionally, the coupling path, e.g. J(POCF). Where no ambiguity arises, the elements involved can be, alternatively, given as subscripts, e.g. J_{CH}. The nucleus of higher mass should be given first. The same applies to the reduced coupling constant.
(22) M rather than m is frequently recommended, but most NMR practitioners use m so as to avoid confusion with magnetization.
(23) This is for a spin system in the presence of a magnetic flux density \boldsymbol{B}_{0}.
(24) See Section 2.5, notes 14 and 15, p. 23 and 24.

Name	Symbol	Definition	SI unit	Notes
electric field gradient	q	$q_{\alpha \beta}=-\partial^{2} V / \partial \alpha \partial \beta$	$\mathrm{V} \mathrm{m}^{-2}$	25
nuclear quadrupole coupling constant	χ	$\chi=e q_{z z} Q / h$	Hz	19
time dimensions for two-dimensional NMR	t_{1}, t_{2}			
spin-lattice relaxation time (longitudinal) for nucleus A	$T_{1}{ }^{\text {A }}$			26, 27
spin-spin relaxation time (transverse) for nucleus A	$T_{2}{ }^{\text {A }}$			26
spin wavefunctions	$\alpha ; \beta$			28
gyromagnetic ratio	γ	$\gamma=\mu / \hbar \sqrt{I(I+1)}$	${ }^{1} \mathrm{~T}^{-}$	15, 29
chemical shift for the nucleus A	$\delta_{\text {A }}$	$\delta_{\mathrm{A}}=\left(\nu_{\mathrm{A}}-\nu_{\mathrm{ref}}\right) / \nu_{\text {re }}$		30
nuclear Overhauser enhancement	η		1	31
nuclear magneton	μ_{N}	$\mu_{\mathrm{N}}=\left(m_{\mathrm{e}} / m_{\mathrm{p}}\right) \mu_{\mathrm{B}}$	J T ${ }^{-1}$	32
resonance frequency	ν		Hz	18
of a reference molecule	$\nu_{\text {ref }}$			
of the observed rf field	ν_{1}			
of the irradiating rf field	ν_{2}			
standardized resonance frequency for nucleus A	$\Xi_{\text {A }}$		Hz	33
shielding tensor	σ		1	34
shielding constant	$\sigma_{\text {A }}$	$B_{\mathrm{A}}=\left(1-\sigma_{\mathrm{A}}\right) B_{0}$	1	34
correlation time	τ_{c}		S	26

(25) The symbol \boldsymbol{q} is recommended by IUPAC for the field gradient tensor, with the units of $\mathrm{V} \mathrm{m}^{-2}$ (see Section 2.5, p. 24). With \boldsymbol{q} defined in this way, the quadrupole coupling constant is $\chi=e q_{z z} Q / h$. It is common in NMR to denote the field gradient tensor as $e \boldsymbol{q}$ and the quadrupole coupling constant as $\chi=e^{2} q_{z z} Q / h . \boldsymbol{q}$ has principal components $q_{X X}, q_{Y Y}, q_{Z Z}$.
(26) The relaxation times and the correlation times are normally given in the units of s . Strictly speaking, this refers to $\mathrm{s} \mathrm{rad}{ }^{-1}$.
(27) The spin-lattice relaxation time of nucleus A in the frame of reference rotating with \boldsymbol{B}_{1} is denoted $T_{1 \rho}{ }^{\mathrm{A}}$.
(28) See Section 2.4, note 9, p. 19.
(29) μ is the magnitude of the nuclear magnetic moment.
(30) Chemical shift (of the resonance) for the nucleus of element A (positive when the sample resonates to high frequency of the reference); for conventions, see [47]. Further information regarding solvent, references, or nucleus of interest may be given by superscripts or subscripts or in parentheses.
(31) The nuclear Overhauser effect, $1+\eta$, is defined as the ratio of the signal intensity for the I nuclear spin, obtained under conditions of saturation of the S nuclear spin, and the equilibrium signal intensity for the I nuclear spin.
(32) m_{e} and m_{p} are the electron and proton mass, respectively. μ_{B} is the Bohr magneton (see Section 2.5, notes 1 and 2, p. 22 and Chapter 5, p. 111).
(33) Resonance frequency for the nucleus of element A in a magnetic field such that the protons in tetramethylsilane (TMS) resonate exactly at 100 MHz .
(34) The symbols σ_{A} (and related terms of the shielding tensor and its components) should refer to shielding on an absolute scale (for theoretical work). For shielding relative to a reference, symbols such as $\sigma_{\mathrm{A}}-\sigma_{\text {ref }}$ should be used. B_{A} is the corresponding effective magnetic flux density (see Section 2.3, note 9, p. 17).

2.6.1 Symbols for angular momentum operators and quantum numbers

In the following table, all of the operator symbols denote the dimensionless ratio angular momentum divided by \hbar. Although this is a universal practice for the quantum numbers, some authors use the operator symbols to denote angular momentum, in which case the operators would have SI units: J s. The column heading " Z-axis" denotes the space-fixed component, and the heading " z-axis" denotes the molecule-fixed component along the symmetry axis (linear or symmetric top molecules), or the axis of quantization.

Angular momentum ${ }^{1}$	Operator symbol	Quantum number symbol			Notes
		Total	Z-axis	z-axis	
electron orbital one electron only	\widehat{L}	L	M_{L}	1	2
	\widehat{l}	l	m_{l}	λ	2
electron spin one electron only	\widehat{S}	S	M_{S}	Σ	
	\widehat{s}	s	m_{s}		
electron orbital plus spin	$\widehat{L}+\widehat{S}$			$\Omega=\Lambda+\Sigma$	2
nuclear orbital (rotational)	$\widehat{\boldsymbol{R}}$	R		K_{R}, k_{R}	
nuclear spin	\widehat{I}	I	M_{I}		
internal vibrational					
spherical top	\widehat{l}	$l(l \zeta)$		K_{l}	3
other	$\widehat{j}, \widehat{\pi}$			$l(l \zeta)$	2, 3
sum of $R+L(+j)$	\widehat{N}	N		K, k	2
sum of $N+S$	\widehat{J}		M_{J}	K, k	2, 4
sum of $J+I$	$\widehat{\boldsymbol{F}}$		M_{F}		

(1) In all cases the vector operator and its components are related to the quantum numbers by eigenvalue equation analogous to:

$$
\widehat{\boldsymbol{J}}^{2} \psi=J(J+1) \psi, \quad \widehat{J}_{Z} \psi=M_{J} \psi, \quad \text { and } \quad \widehat{J}_{z} \psi=K \psi
$$

where the component quantum numbers M_{J} and K take integral or half-odd values in the range $-J \leqslant M_{J} \leqslant+J,-J \leqslant K \leqslant+J$. (If the operator symbols are taken to represent angular momentum, rather than angular momentum divided by \hbar, the eigenvalue equations should read $\widehat{\boldsymbol{J}}^{2} \psi=J(J+1) \hbar^{2} \psi, \widehat{J}_{Z} \psi=M_{J} \hbar \psi$, and $\widehat{J}_{z} \psi=K \hbar \psi$.) l is frequently called the azimuthal quantum number and m_{l} the magnetic quantum number.
(2) Some authors, notably Herzberg [29-31], treat the component quantum numbers Λ, Ω, l and K as taking positive or zero values only, so that each non-zero value of the quantum number labels two wavefunctions with opposite signs for the appropriate angular momentum component. When this is done, lower case k is commonly regarded as a signed quantum number, related to K by $K=|k|$. However, in theoretical discussions all component quantum numbers are usually treated as signed, taking both positive and negative values.
(3) There is no uniform convention for denoting the internal vibrational angular momentum; j, π, p and G have all been used. For symmetric top and linear molecules the component of j in the symmetry axis is always denoted by the quantum number l, where l takes values in the range $-v \leqslant l \leqslant+v$ in steps of 2 . The corresponding component of angular momentum is actually $l \zeta \hbar$, rather than $l \hbar$, where ζ is the Coriolis ζ-constant (see note 7, p. 26).
(4) Asymmetric top rotational states are labeled by the value of J (or N if $S \neq 0$), with subscripts K_{a}, K_{c}, where the latter correlate with the $K=|k|$ quantum number about the a and c axes in the prolate and oblate symmetric top limits respectively.

$$
\text { Example } \quad J_{K_{a}, K_{c}}=5_{2,3} \quad \text { for a particular rotational level. }
$$

2.6.2 Symbols for symmetry operators and labels for symmetry species

(i) Symmetry operators in space-fixed coordinates [41, 48]

identity	E
permutation	P, p
space-fixed inversion	$E^{*},(P)$
permutation-inversion	$P^{*}\left(=P E^{*}\right), p^{*}$

The permutation operation P permutes the labels of identical nuclei.
Example In the NH_{3} molecule, if the hydrogen nuclei are labeled 1, 2 and 3, then $P=(123)$ would symbolize the permutation where 1 is replaced by 2,2 by 3 , and 3 by 1 .

The inversion operation E^{*} reverses the sign of all particle coordinates in the space-fixed origin, or in the molecule-fixed centre of mass if translation has been separated. It is also called the parity operator and then frequently denoted by P, although this cannot be done in parallel with P for permutation, which then should be denoted by lower case p. In field-free space and in the absence of parity violation [26], true eigenfunctions of the hamiltonian are either of positive parity + (unchanged) or of negative parity - (change sign) under E^{*}. The label may be used to distinguish the two nearly degenerate components formed by Λ-doubling (in a degenerate electronic state) or l-doubling (in a degenerate vibrational state) in linear molecules, or by K-doubling (asymmetrydoubling) in slightly asymmetric tops. For linear molecules, Λ - or l-doubled components may also be distinguished by the labels e or f [49]; for singlet states these correspond respectively to parity + or - for J even and vice versa for J odd (but see [49]). For linear molecules in degenerate electronic states the Λ-doubled levels may alternatively be labeled Π (A^{\prime}) or $\Pi\left(\mathrm{A}^{\prime \prime}\right)$ (or $\Delta\left(\mathrm{A}^{\prime}\right), \Delta\left(\mathrm{A}^{\prime \prime}\right)$ etc.) [50]. Here the labels A^{\prime} or $\mathrm{A}^{\prime \prime}$ describe the symmetry of the electronic wavefunction at high J with respect to reflection in the plane of rotation (but see [50] for further details). The A^{\prime} or $A^{\prime \prime}$ labels are particularly useful for the correlation of states of molecules involved in reactions or photodissociation.

In relation to permutation-inversion symmetry species the superscript + or - may be used to designate parity, whereas a letter is used to designate symmetry with respect to the permutation group. One can also use the systematic notation from the theory of the symmetric group (permutation group) S_{n} [51], the permutation inversion group being denoted by $S_{n}{ }^{*}$ in this case, if one considers the full permutation group. The species is then given by the partition $P\left(S_{n}\right)$ [52-54]. The examples give the species for $S_{4}{ }^{*}$, where the partition is conventionally given in square brackets []. Conventions with respect to these symbols still vary ([2.b] and [39-41,51-54]).

Examples $\quad \mathrm{A}_{1}^{+}$totally symmetric species with respect to permutation, positive parity, [4] ${ }^{+}$
A_{1}^{-}totally symmetric species with respect to permutation, negative parity, [4] ${ }^{-}$
E^{+}doubly degenerate species with respect to permutation, positive parity, $\left[2^{2}\right]^{+}$
E^{-}doubly degenerate species with respect to permutation, negative parity, $\left[2^{2}\right]^{-}$
F_{1}^{+}triply degenerate species with respect to permutation, positive parity, $\left[2,1^{2}\right]^{+}$
F_{1}^{-}triply degenerate species with respect to permutation, negative parity, $\left[2,1^{2}\right]^{-}$
The Hermann-Mauguin symbols of symmetry operations used for crystals are given in Section 2.8.1 (ii), p. 44.
(ii) Symmetry operators in molecule-fixed coordinates (Schönflies symbols) [29-31]

identity	E
rotation by $2 \pi / n$	C_{n}
reflection	$\sigma, \sigma_{\mathrm{v}}, \sigma_{\mathrm{d}}, \sigma_{\mathrm{h}}$
inversion	i
rotation-reflection	$S_{n}\left(=C_{n} \sigma_{\mathrm{h}}\right)$

If C_{n} is the primary axis of symmetry, wavefunctions that are unchanged or change sign under the operator C_{n} are given species labels A or B respectively, and otherwise wavefunctions that are multiplied by $\exp (\pm 2 \pi \mathrm{i} s / n)$ are given the species label E_{s}. Wavefunctions that are unchanged or change sign under i are labeled g (gerade) or u (ungerade) respectively. Wavefunctions that are unchanged or change sign under σ_{h} have species labels with a prime ' or a double prime ", respectively. For more detailed rules see [28-31].

2.6.3 Other symbols and conventions in optical spectroscopy

(i) Term symbols for atomic states

The electronic states of atoms are labeled by the value of the quantum number L for the state. The value of L is indicated by an upright capital letter: S, P, D, F, G, H, I, and K, \cdots, are used for $L=0,1,2,3,4,5,6$, and $7, \cdots$, respectively. The corresponding lower case letters are used for the orbital angular momentum of a single electron. For a many-electron atom, the electron spin multiplicity $(2 S+1)$ may be indicated as a left-hand superscript to the letter, and the value of the total angular momentum J as a right-hand subscript. If either L or S is zero only one value of J is possible, and the subscript is then usually suppressed. Finally, the electron configuration of an atom is indicated by giving the occupation of each one-electron orbital as in the examples below.

Examples

$$
\begin{aligned}
& \mathrm{B}:(1 \mathrm{~s})^{2}(2 \mathrm{~s})^{2}(2 \mathrm{p})^{1},{ }^{2} \mathrm{P}_{1 / 2}^{\circ} \\
& \mathrm{C}:(1 \mathrm{~s})^{2}(2 \mathrm{~s})^{2}(2 \mathrm{p})^{2},{ }^{3} \mathrm{P}_{0} \\
& \mathrm{~N}:(1 \mathrm{~s})^{2}(2 \mathrm{~s})^{2}(2 \mathrm{p})^{3},{ }^{4} \mathrm{~S}^{\circ}
\end{aligned}
$$

A right superscript ${ }^{\circ}$ may be used to indicate odd parity (negative parity -). Omission of the superscript ${ }^{\mathrm{e}}$ is then to be interpreted as even parity (positive parity +). In order to avoid ambiguities it can be useful to always designate parity by + or - as a right superscript (i.e. ${ }^{4} \mathrm{~S}_{3 / 2}^{-}$for N and ${ }^{3} \mathrm{P}_{0}^{+}$for C$)$.

(ii) Term symbols for molecular states

The electronic states of molecules are labeled by the symmetry species label of the wavefunction in the molecular point group. These should be Latin or Greek upright capital letters. As for atoms, the spin multiplicity $(2 S+1)$ may be indicated by a left superscript. For linear molecules the value of $\Omega(=\Lambda+\Sigma)$ may be added as a right subscript (analogous to J for atoms). If the value of Ω is not specified, the term symbol is taken to refer to all component states, and a right subscript r or i may be added to indicate that the components are regular (energy increases with Ω) or inverted (energy decreases with Ω) respectively.

The electronic states of molecules are also given empirical single letter labels as follows. The ground electronic state is labeled X , excited states of the same multiplicity are labeled $\mathrm{A}, \mathrm{B}, \mathrm{C}, \cdots$, in ascending order of energy, and excited states of different multiplicity are labeled with lower case letters $\mathrm{a}, \mathrm{b}, \mathrm{c}, \cdots$. In polyatomic molecules (but not diatomic molecules) it is customary to add a tilde (e.g. $\widetilde{\mathrm{X}}$) to these empirical labels to prevent possible confusion with the symmetry species label.

Finally the one-electron orbitals are labeled by the corresponding lower case letters, and the electron configuration is indicated in a manner analogous to that for atoms.

Examples The ground state of CH is $(1 \sigma)^{2}(2 \sigma)^{2}(3 \sigma)^{2}(1 \pi)^{1}, \mathrm{X}^{2} \Pi_{\mathrm{r}}$, in which the ${ }^{2} \Pi_{1 / 2}$ component lies below the ${ }^{2} \Pi_{3 / 2}$ component, as indicated by the subscript r for regular.

Examples (continued)
The ground state of OH is $(1 \sigma)^{2}(2 \sigma)^{2}(3 \sigma)^{2}(1 \pi)^{3}, \mathrm{X}{ }^{2} \Pi_{\mathrm{i}}$, in which the ${ }^{2} \Pi_{3 / 2}$ component lies below the ${ }^{2} \Pi_{1 / 2}$ component, as indicated by the subscript i for inverted.
The two lowest electronic states of CH_{2} are $\quad \cdots\left(2 \mathrm{a}_{1}\right)^{2}\left(1 \mathrm{~b}_{2}\right)^{2}\left(3 \mathrm{a}_{1}\right)^{2}$, $\tilde{a}^{1} \mathrm{~A}_{1}$,

$$
\begin{array}{r}
\cdots\left(2 \mathrm{a}_{1}\right)^{2}\left(1 \mathrm{~b}_{2}\right)^{2}\left(3 \mathrm{a}_{1}\right)^{1}\left(1 \mathrm{~b}_{1}\right)^{1}, \widetilde{\mathrm{X}}^{3} \mathrm{~B}_{1} . \\
\cdots\left(\mathrm{a}_{2 \mathrm{u}}\right)^{2}\left(\mathrm{e}_{1 \mathrm{~g}}\right)^{4}, \widetilde{\mathrm{X}}^{1} \mathrm{~A}_{1 \mathrm{~g}} .
\end{array}
$$

The ground state of $\mathrm{C}_{6} \mathrm{H}_{6}$ (benzene) is
The vibrational states of molecules are usually indicated by giving the vibrational quantum numbers for each normal mode.

Examples For a bent triatomic molecule $(0,0,0)$ denotes the ground state,
$(1,0,0)$ denotes the ν_{1} state, i.e. $v_{1}=1$, and
$(1,2,0)$ denotes the $\nu_{1}+2 \nu_{2}$ state, i.e. $v_{1}=1, v_{2}=2$, etc.

(iii) Notation for spectroscopic transitions

The upper and lower levels of a spectroscopic transition are indicated by a prime ${ }^{\prime}$ and double prime " respectively.

Example $h \nu=E^{\prime}-E^{\prime \prime}$
Transitions are generally indicated by giving the excited-state label, followed by the groundstate label, separated by a dash or an arrow to indicate the direction of the transition (emission to the right, absorption to the left).

Examples $\mathrm{B}-\mathrm{A} \quad$ indicates a transition between a higher energy state B and a lower energy state A;
$\mathrm{B} \rightarrow \mathrm{A} \quad$ indicates emission from B to A ; $\mathrm{B} \leftarrow \mathrm{A} \quad$ indicates absorption from A to B ;
$\mathrm{A} \rightarrow \mathrm{B} \quad$ indicates more generally a transition from the initial state A to final state B in kinetics (see Section 2.12, p. 63);
$(0,2,1) \leftarrow(0,0,1)$ labels the $2 \nu_{2}+\nu_{3}-\nu_{3}$ hot band in a bent triatomic molecule.
A more compact notation [55] may be used to label vibronic (or vibrational) transitions in polyatomic molecules with many normal modes, in which each vibration index r is given a superscript v_{r}^{\prime} and a subscript $v_{r}^{\prime \prime}$ indicating the upper electronic and the lower electronic state values of the vibrational quantum number. When $v_{r}^{\prime}=v_{r}^{\prime \prime}=0$ the corresponding index is suppressed.

Examples $\quad 1_{0}^{1} \quad$ denotes the transition $(1,0,0)-(0,0,0)$;
$2_{0}^{2} 3_{1}^{1} \quad$ denotes the transition $(0,2,1)-(0,0,1)$.
In order to denote transitions within the same electronic state one may use matrix notation or an arrow.

Example $\quad 2_{20}$ or $2_{2 \leftarrow 0}$ denotes a vibrational transition within the electronic ground state from $v_{2}=0$ to $v_{2}=2$.
For rotational transitions, the value of $\Delta J=J^{\prime}-J^{\prime \prime}$ is indicated by a letter labelling the branches of a rotational band: $\Delta J=-2,-1,0,1$, and 2 are labelled as the O-branch, P-branch, Q-branch, R-branch, and S-branch respectively. The changes in other quantum numbers (such as K for a symmetric top, or K_{a} and K_{c} for an asymmetric top) may be indicated by adding lower case letters as a left superscript according to the same rule.

The value of K in the lower level is indicated as a right subscript, e.g. ${ }^{\mathrm{p}} \mathrm{Q}_{K^{\prime \prime}}$ or ${ }^{\mathrm{p}} \mathrm{Q}_{2}(5)$ indicating the transition from $K^{\prime \prime}=2$ to $K^{\prime}=1$, the value of $J^{\prime \prime}$ being added in parentheses.

2.7 ELECTROMAGNETIC RADIATION

The quantities and symbols given here have been selected on the basis of recommendations by IUPAP [4], ISO [5.f], and IUPAC [56-59], as well as by taking into account the practice in the field of laser physics. Terms used in photochemistry [60] have been considered as well, but definitions still vary. Terms used in high energy ionizing electromagnetic radiation, radiation chemistry, radiochemistry, and nuclear chemistry are not included or discussed.

Name	Symbol	Definition	SI unit	Notes
wavelength	λ		m	
speed of light				
in vacuum	c_{0}	$c_{0}=299792458 \mathrm{~m} \mathrm{~s}^{-1}$	$\mathrm{m} \mathrm{s}^{-1}$	1
in a medium	c	$c=c_{0} / n$	$\mathrm{m} \mathrm{s}^{-1}$	1
wavenumber in vacuum	$\widetilde{\nu}$	$\widetilde{\nu}=\nu / c_{0}=1 / \lambda$	m^{-1}	2
wavenumber (in a medium)	σ	$\sigma=1 / \lambda$	m	
frequency	ν	$\nu=c / \lambda$	Hz	
angular frequency, pulsatance	ω	$\omega=2 \pi \nu$	$\mathrm{s}^{-1}, \mathrm{rad} \mathrm{s}^{-1}$	
refractive index	n	$n=c_{0} / c$	1	
Planck constant	h		J s	
Planck constant divided by 2π	\hbar	$\hbar=h / 2 \pi$	J s	
radiant energy	Q, W		J	3
radiant energy density	ρ, w	$\rho=\mathrm{d} Q / \mathrm{d} V$	$\mathrm{J} \mathrm{m}^{-3}$	3
spectral radiant energy density				3
in terms of frequency	ρ_{ν}, w_{ν}	$\rho_{\nu}=\mathrm{d} \rho / \mathrm{d} \nu$	J m ${ }^{-3} \mathrm{~Hz}^{-1}$	
in terms of wavenumber	$\rho_{\widetilde{\nu}}, w_{\widetilde{\nu}}$	$\rho_{\widetilde{\nu}}=\mathrm{d} \rho / \mathrm{d} \widetilde{\nu}$	$\mathrm{J} \mathrm{m}^{-2}$	
in terms of wavelength	$\rho_{\lambda}, w_{\lambda}$	$\rho_{\lambda}=\mathrm{d} \rho / \mathrm{d} \lambda$	J m ${ }^{-4}$	
radiant power (radiant energy	P, Φ	$P=\mathrm{d} Q / \mathrm{d} t$	W	3
per time)				
radiant intensity	$I_{\text {e }}$	$I_{\mathrm{e}}=\mathrm{d} P / \mathrm{d} \Omega$	$\mathrm{W} \mathrm{sr}^{-1}$	3, 4
radiant excitance	M	$M=\mathrm{d} P / \mathrm{d} A_{\text {source }}$	$\mathrm{W} \mathrm{m}^{-2}$	3, 4

(1) When there is no risk of ambiguity the subscript denoting vacuum is often omitted. n denotes the refraction index of the medium.
(2) The unit cm^{-1} is widely used for the quantity wavenumber in vacuum.
(3) The symbols for the quantities such as radiant energy and intensity are also used for the corresponding quantities concerning visible radiation, i.e. luminous quantities and photon quantities. Subscripts e for energetic, v for visible, and p for photon may be added whenever confusion between these quantities might otherwise occur. The units used for luminous quantities are derived from the base unit candela (cd) (see Section 3.3, p. 87).

Examples	radiant intensity	$I_{\mathrm{e}}, I_{\mathrm{e}}=\mathrm{d} P / \mathrm{d} \Omega$,	SI unit: W sr
	luminous intensity	I_{v},	SI unit: cd^{-1}
	photon intensity	I_{p},	SI unit: $\mathrm{s}^{-1} \mathrm{sr}^{-1}$

The radiant intensity I_{e} should be distinguished from the plain intensity or irradiance I (see note 5). Additional subscripts to distinguish absorbed (abs), transmitted (tr) or reflected (refl) quantities may be added, if necessary.
(4) The radiant intensity is the radiant power per solid angle in the direction of the point from which the source is being observed. The radiant excitance is the total emitted radiant power per area $A_{\text {source }}$ of the radiation source, for all wavelengths. The radiance is the radiant intensity per area of

Name	Symbol	Definition	SI unit	Notes
radiance	L	$I_{\mathrm{e}}=\int L \cos \Theta \mathrm{~d} A_{\text {source }}$	W sr ${ }^{-1} \mathrm{~m}^{-2}$	3, 4
intensity, irradiance	I, E	$I=\mathrm{d} P / \mathrm{d} A$	$\mathrm{W} \mathrm{m}^{-2}$	3, 5
spectral intensity, spectral irradiance	$I_{\widetilde{\nu}}, E_{\widetilde{\nu}}$	$I_{\widetilde{\nu}}=\mathrm{d} I / \mathrm{d} \widetilde{\nu}$	W m ${ }^{-1}$	
fluence	$F,(H)$	$F=\int I \mathrm{~d} t=\int(\mathrm{d} P / \mathrm{d} A) \mathrm{d} t$	J m ${ }^{-}$	7
Einstein coefficient, spontaneous emission	$A_{i j}$	$\mathrm{d} N_{j} / \mathrm{d} t=-\sum_{i} A_{i j} N_{j}$	s^{-1}	8, 9
stimulated or induced emission	$B_{i j}$	$\mathrm{d} N_{j} / \mathrm{d} t=-\sum \rho_{\widetilde{\nu}}\left(\widetilde{\nu}_{i j}\right) B_{i j} N_{j}$	skg	
absorption	$B_{j i}$	$\mathrm{d} N_{i} / \mathrm{d} t=-\sum_{j}^{i} \rho_{\widetilde{\nu}}\left(\widetilde{\nu}_{i j}\right) B_{j i} N_{i}$	kg^{-}	
emissivity, emittance	ε	$\varepsilon=M / M_{\mathrm{bb}}$	1	10
Stefan-Boltzmann constant	σ	$M_{\mathrm{bb}}=\sigma T^{4}$	W m ${ }^{-2} \mathrm{~K}^{-4}$	10
étendue (throughput, light gathering power)	$E,(e)$	$E=A \Omega=P / L$	$\mathrm{m}^{2} \mathrm{sr}$	11

(4) (continued) radiation source; Θ is the angle between the normal to the area element and the direction of observation as seen from the source.
(5) The intensity or irradiance is the radiation power per area that is received at a surface. Intensity, symbol I, is usually used in discussions involving collimated beams of light, as in applications of the Beer-Lambert law for spectrometric analysis. Intensity of electromagnetic radiation can also be defined as the modulus of the Poynting vector (see Section 2.3, p. 17 and Section 7.4, p. 148). In photochemistry the term intensity is sometimes used as an alias for radiant intensity and must not be understood as an irradiance, for which the symbol E is preferred [60].
(6) Spectral quantities may be defined with respect to frequency ν, wavelength λ, or wavenumber $\widetilde{\nu}$; see the entry for spectral radiant energy density in this table.
(7) Fluence is used in photochemistry to specify the energy per area delivered in a given time interval (for instance by a laser pulse); fluence is the time integral of the fluence rate. Sometimes distinction must be made between irradiance and fluence rate [60]; fluence rate reduces to irradiance for a light beam incident from a single direction perpendicularly to the surface. The time integral of irradiance is called radiant exposure.
(8) The indices i and j refer to individual states; $E_{j}>E_{i}, E_{j}-E_{i}=h c \widetilde{\nu}_{i j}$, and $B_{j i}=B_{i j}$ in the defining equations. The coefficients B are defined here using energy density $\rho_{\tilde{\nu}}$ in terms of wavenumber; they may alternatively be defined using energy density in terms of frequency ρ_{ν}, in which case B has SI units $\mathrm{m} \mathrm{kg}^{-1}$, and $B_{\nu}=c_{0} B_{\widetilde{\nu}}$ where B_{ν} is defined using frequency and $B_{\widetilde{\nu}}$ using wavenumber. The defining equations refer to the partial contributions to the rate of change. (9) The relation between the Einstein coefficients A and $B_{\widetilde{\nu}}$ is $A=8 \pi h c_{0} \widetilde{\nu}^{3} B_{\widetilde{\nu}}$. The Einstein stimulated absorption or emission coefficient B may also be related to the transition moment between the states i and j; for an electric dipole transition the relation is

$$
\left.B_{\widetilde{\nu}, i j}=\frac{8 \pi^{3}}{3 h^{2} c_{0}\left(4 \pi \varepsilon_{0}\right)} \sum_{\rho}\left|\langle i| \mu_{\rho}\right| j\right\rangle\left.\right|^{2}
$$

in which the sum over ρ runs over the three space-fixed cartesian axes, and μ_{ρ} is a space-fixed component of the dipole moment operator. Again, these equations are based on a wavenumber definition of the Einstein coefficient B (i.e. $B_{\widetilde{\nu}}$ rather than B_{ν}).
(10) The emittance of a sample is the ratio of the radiant excitance emitted by the sample to the radiant excitance emitted by a black body at the same temperature; M_{bb} is the latter quantity. See Chapter 5, p. 112 for the value of the Stefan-Boltzmann constant.

Name	Symbol	Definition	SI unit	Notes
resolution	$\delta \widetilde{\nu}$		m^{-1}	2, 12, 13
resolving power	R	$R=\widetilde{\nu} / \delta \widetilde{\nu}$	1	13
free spectral range	$\Delta \widetilde{\nu}$	$\Delta \widetilde{\nu}=1 / 2 l$	m^{-1}	2, 14
finesse	f	$f=\Delta \widetilde{\nu} / \delta \widetilde{\nu}$	1	14
quality factor	Q	$Q=2 \pi \nu \frac{W}{-\mathrm{d} W / \mathrm{d} t}$	1	14, 15
first radiation constant	c_{1}	$c_{1}=2 \pi h c_{0}{ }^{2}$	W m ${ }^{2}$	
second radiation constant	c_{2}	$c_{2}=h c_{0} / k_{\mathrm{B}}$	K m	16
transmittance, transmission factor	τ, T	$\tau=P_{\text {tr }} / P_{0}$	1	17, 18
absorptance, absorption factor	α	$\alpha=P_{\text {abs }} / P_{0}$		17, 18
reflectance, reflection factor	ρ, R	$\rho=P_{\text {refl }} / P_{0}$		17, 18
(decadic) absorbance	A_{10}, A	$A_{10}=-\lg \left(1-\alpha_{\mathrm{i}}\right)$	1	17-20
napierian absorbance	A_{e}, B	$A_{\mathrm{e}}=-\ln \left(1-\alpha_{\mathrm{i}}\right)$	1	$17-20$
absorption coefficient, (linear) decadic	a, K	$a=A_{10} / l$	m^{-1}	18, 21
(linear) napierian	α	$\alpha=A_{\mathrm{e}} / l$	m^{-1}	18, 21
molar (decadic)	ε	$\varepsilon=a / c=A_{10} / c l$	$\mathrm{m}^{2} \mathrm{~mol}^{-1}$	18, 21, 22
molar napierian	κ	$\kappa=\alpha / c=A_{\mathrm{e}} / c l$	$\mathrm{m}^{2} \mathrm{~mol}^{-1}$	18, 21, 22

(11) Étendue is a characteristic of an optical instrument. It is a measure of the light gathering power, i.e. the power transmitted per radiance of the source. A is the area of the source or image stop; Ω is the solid angle accepted from each point of the source by the aperture stop.
(12) The precise definition of resolution depends on the lineshape, but usually resolution is taken as the full line width at half maximum intensity (FWHM) on a wavenumber, $\delta \widetilde{\nu}$, or frequency, $\delta \nu$, scale. Frequently the use of resolving power, of dimension 1, is preferable.
(13) This quantity characterizes the performance of a spectrometer, or the degree to which a spectral line (or a laser beam) is monochromatic. It may also be defined using frequency ν, or wavelength λ.
(14) These quantities characterize a Fabry-Perot cavity, or a laser cavity. l is the cavity spacing, and $2 l$ is the round-trip path length. The free spectral range is the wavenumber interval between successive longitudinal cavity modes.
(15) W is the energy stored in the cavity, and $-\mathrm{d} W / \mathrm{d} t$ is the rate of decay of stored energy. Q is also related to the linewidth of a single cavity mode: $Q=\nu / \delta \nu=\widetilde{\nu} / \delta \widetilde{\nu}$. Thus high Q cavities give narrow linewidths.
(16) k_{B} is the Boltzmann constant (see Section 2.9, p. 45 and Chapter 5, p. 111).
(17) If scattering and luminescence can be neglected, $\tau+\alpha+\rho=1$. In optical spectroscopy internal properties (denoted by subscript i) are defined to exclude surface effects and effects of the cuvette such as reflection losses, so that $\tau_{\mathrm{i}}+\alpha_{\mathrm{i}}=1$, if scattering and luminescence can be neglected. This leads to the customary form of the Beer-Lambert law, $P_{\mathrm{tr}} / P_{0}=I_{\mathrm{tr}} / I_{0}=\tau_{\mathrm{i}}=1-\alpha_{\mathrm{i}}=\exp (-\kappa c l)$. Hence $A_{\mathrm{e}}=-\ln \left(\tau_{\mathrm{i}}\right), A_{10}=-\lg \left(\tau_{\mathrm{i}}\right)$.
(18) In spectroscopy all of these quantities are commonly taken to be defined in terms of the spectral intensity, $I_{\widetilde{\nu}}(\widetilde{\nu})$, hence they are all regarded as functions of wavenumber $\widetilde{\nu}$ (or frequency ν) across the spectrum. Thus, for example, the absorption coefficient $\alpha(\widetilde{\nu})$ as a function of wavenumber $\widetilde{\nu}$ defines the absorption spectrum of the sample; similarly $T(\widetilde{\nu})$ defines the transmittance spectrum. Spectroscopists use $I(\widetilde{\nu})$ instead of $I_{\widetilde{\nu}}(\widetilde{\nu})$.
(19) The definitions given here relate the absorbance A_{10} or A_{e} to the internal absorptance α_{i} (see

Name	Symbol	Definition	SI unit	Notes
net absorption cross section	$\sigma_{\text {net }}$	$\sigma_{\text {net }}=\kappa / N_{\text {A }}$	m^{2}	23
absorption coefficient integrated over $\widetilde{\nu}$	A, \bar{A}	$A=\int \kappa(\widetilde{\nu}) \mathrm{d} \widetilde{\nu}$	$\mathrm{m} \mathrm{mol}^{-1}$	23, 24
	S	$S=A / N_{\mathrm{A}}$	m	23, 24
	\bar{S}	$\bar{S}=(1 / p l) \int \ln \left(I_{0} / I\right) \mathrm{d} \widetilde{\nu}$	$\mathrm{Pa}^{-1} \mathrm{~m}^{-2}$	23-25
integrated over $\ln \widetilde{\nu}$	Γ	$\Gamma=\int \kappa(\widetilde{\nu}) \widetilde{\nu}^{-1} \mathrm{~d} \widetilde{\nu}$	$\mathrm{m}^{2} \mathrm{~mol}^{-1}$	23, 24
integrated net absorption cross section	$G_{\text {net }}$	$G_{\text {net }}=\int \sigma_{\text {net }}(\widetilde{\nu}) \widetilde{\nu}^{-1} \mathrm{~d} \widetilde{\nu}$	m^{2}	23, 24
absorption index, imaginary refractive index	k	$k=\alpha / 4 \pi \widetilde{\nu}$		26
complex refractive index	\hat{n}	$\hat{n}=n+\mathrm{i} k$	1	
molar refraction, molar refractivity	R	$R=\left(\frac{n^{2}-1}{n^{2}+2}\right) V_{\mathrm{m}}$	$\mathrm{m}^{3} \mathrm{~mol}^{-1}$	
angle of optical rotation	α		$1, \mathrm{rad}$	27
specific optical rotatory power	$[\alpha]_{\lambda}{ }^{\theta}$	$[\alpha]_{\lambda}{ }^{\theta}=\alpha / \gamma l$	$\mathrm{rad} \mathrm{m}^{2} \mathrm{~kg}^{-1}$	27
molar optical rotatory power	α_{m}	$\alpha_{\mathrm{m}}=\alpha / c l$	$\mathrm{rad} \mathrm{m}{ }^{2} \mathrm{~mol}^{-1}$	27

(19) (continued) note 17). However the subscript i on the absorptance α is often omitted. Experimental data must include corrections for reflections, scattering and luminescence, if the absorbance is to have an absolute meaning. In practice the absorbance is measured as the logarithm of the ratio of the light transmitted through a reference cell (with solvent only) to that transmitted through a sample cell.
(20) In reference [57] the symbol A is used for decadic absorbance, and B for napierian absorbance. (21) l is the absorbing path length, and c is the amount (of substance) concentration.
(22) The molar decadic absorption coefficient ε is sometimes called the "extinction coefficient" in the published literature. Unfortunately numerical values of the "extinction coefficient" are often quoted without specifying units; the absence of units usually means that the units are $\mathrm{mol}^{-1} \mathrm{dm}^{3}$ cm^{-1} (see also [61]). The word "extinction" should properly be reserved for the sum of the effects of absorption, scattering, and luminescence.
(23) Note that these quantities give the net absorption coefficient κ, the net absorption cross section $\sigma_{\text {net }}$, and the net values of A, S, \bar{S}, Γ, and $G_{\text {net }}$, in the sense that they are the sums of effects due to absorption and induced emission (see the discussion in Section 2.7.1, p. 38).
(24) The definite integral defining these quantities may be specified by the limits of integration in parentheses, e.g. $G\left(\widetilde{\nu}_{1}, \widetilde{\nu}_{2}\right)$. In general the integration is understood to be taken over an absorption line or an absorption band. A, \bar{S}, and Γ are measures of the strength of the band in terms of amount concentration; $G_{\text {net }}=\Gamma / N_{\mathrm{A}}$ and $S=A / N_{\mathrm{A}}$ are corresponding molecular quantities. For a single spectral line the relation of these quantities to the Einstein transition probabilities is discussed in Section 2.7.1, p. 38. The symbol \bar{A} may be used for the integrated absorption coefficient A when there is a possibility of confusion with the Einstein spontaneous emission coefficient $A_{i j}$.
The integrated absorption coefficient of an electronic transition is often expressed in terms of the oscillator strength or " f-value", which is dimensionless, or in terms of the Einstein transition probability $A_{i j}$ between the states involved, with SI unit s ${ }^{-1}$. Whereas $A_{i j}$ has a simple and universally accepted meaning (see note 9 , p. 35), there are differing uses of f. A common practical conversion is given by the equation

$$
f_{i j}=\left[\left(4 \pi \varepsilon_{0}\right) m_{\mathrm{e}} c_{0} / 8 \pi^{2} e^{2}\right] \lambda^{2} A_{i j} \quad \text { or } \quad f_{i j} \approx\left(1.4992 \times 10^{-14}\right)\left(A_{i j} / \mathrm{s}^{-1}\right)(\lambda / \mathrm{nm})^{2}
$$

in which λ is the transition wavelength, and i and j refer to individual states. For strongly allowed electronic transitions f is of order unity.

2.7.1 Quantities and symbols concerned with the measurement of absorption intensity

In most experiments designed to measure the intensity of spectral absorption, the measurement gives the net absorption due to the effects of absorption from the lower energy level m to the upper energy level n, minus induced emission from n to m. Since the populations depend on the temperature, so does the measured net absorption. This comment applies to all the quantities defined in the table to measure absorption intensity, although for transitions where $h c_{0} \widetilde{\nu} \gg k T$ the temperature dependence is small and for $\widetilde{\nu}>1000 \mathrm{~cm}^{-1}$ at ordinary temperatures induced emission can generally be neglected.

In a more fundamental approach one defines the cross section $\sigma_{j i}(\widetilde{\nu})$ for an induced radiative transition from the state i to the state j (in either absorption or emission). For an ideal absorption experiment with only the lower state i populated the integrated absorption cross section for the transition $j \leftarrow i$ is given by

$$
G_{j i}=\int \sigma_{j i}(\widetilde{\nu}) \widetilde{\nu}^{-1} \mathrm{~d} \widetilde{\nu}=\int \sigma_{j i}(\nu) \nu^{-1} \mathrm{~d} \nu
$$

If the upper and lower energy levels are degenerate, the observed line strength is given by summing over transitions between all states i in the lower energy level m and all states j in the upper energy level n, multiplying each term by the fractional population p_{i} in the appropriate initial state. Neglecting induced emission this gives

$$
G_{\text {net }}(n \leftarrow m)=\sum_{i, j} p_{i} G_{j i}
$$

(Notes continued)
(25) The quantity \bar{S} is only used for gases; it is defined in a manner similar to A, except that the partial pressure p of the gas replaces the concentration c. At low pressures $p_{i} \approx c_{i} R T$, so that \bar{S} and A are related by the equation $\bar{S} \approx A / R T$. Thus if \bar{S} is used to report line or band intensities, the temperature should be specified. I_{0} is the incident, I the transmitted intensity, thus $\ln \left(I_{0} / I\right)=-\ln \left(I / I_{0}\right)=-\ln \left(1-P_{\text {abs }} / P_{0}\right)=A_{\mathrm{e}}$ (see also notes 17 and 19, p. 36).
(26) α in the definition is the napierian absorption coefficient.
(27) The sign convention for the angle of optical rotation is as follows: α is positive if the plane of polarization is rotated clockwise as viewed looking towards the light source. If the rotation is anti clockwise, then α is negative. The optical rotation due to a solute in solution may be specified by a statement of the type

$$
\alpha\left(589.3 \mathrm{~nm}, 20^{\circ} \mathrm{C} \text {, sucrose, } 10 \mathrm{~g} \mathrm{dm}^{-3} \text { in } \mathrm{H}_{2} \mathrm{O}, 10 \mathrm{~cm} \text { path }\right)=+0.6647^{\circ}
$$

The same information may be conveyed by quoting either the specific optical rotatory power $\alpha / \gamma l$, or the molar optical rotatory power $\alpha / c l$, where γ is the mass concentration, c is the amount (of substance) concentration, and l is the path length. Most tabulations give the specific optical rotatory power, denoted $[\alpha]_{\lambda}{ }^{\theta}$. The wavelength of light used λ (frequently the sodium D line) and the Celsius temperature θ are conventionally written as a subscript and superscript to the specific rotatory power $[\alpha]$. For pure liquids and solids $[\alpha]_{\lambda}{ }^{\theta}$ is similarly defined as $[\alpha]_{\lambda}{ }^{\theta}=\alpha / \rho l$, where ρ is the mass density.
Specific optical rotatory powers are customarily called specific rotations, and are unfortunately usually quoted without units. The absence of units may usually be taken to mean that the units are ${ }^{\circ} \mathrm{cm}^{3} \mathrm{~g}^{-1} \mathrm{dm}^{-1}$ for pure liquids and solutions, or ${ }^{\circ} \mathrm{cm}^{3} \mathrm{~g}^{-1} \mathrm{~mm}^{-1}$ for solids, where ${ }^{\circ}$ is used as a symbol for degrees of plane angle.

If induced emission is significant then the net integrated cross section becomes

$$
G_{\text {net }}(n \leftarrow m)=\sum_{i, j}\left(p_{i}-p_{j}\right) G_{j i}=\left(\frac{p_{m}}{d_{m}}-\frac{p_{n}}{d_{n}}\right) \sum_{i, j} G_{j i}
$$

Here p_{i} and p_{j} denote the fractional populations of states i and $j\left(p_{i}=\exp \left\{-E_{i} / k T\right\} / q\right.$ in thermal equilibrium, where q is the partition function); p_{m} and p_{n} denote the corresponding fractional populations of the energy levels, and d_{m} and d_{n} the degeneracies ($p_{i}=p_{m} / d_{m}$, etc.). The absorption intensity $G_{j i}$, and the Einstein coefficients $A_{i j}$ and $B_{j i}$, are fundamental measures of the line strength between the individual states i and j; they are related to each other by the general equations

$$
G_{j i}=h B_{\widetilde{\nu}, j i}=\left(h / c_{0}\right) B_{\nu, j i}=A_{i j} /\left(8 \pi c_{0} \widetilde{\nu}^{3}\right)
$$

Finally, for an electric dipole transition these quantities are related to the square of the transition moment by the equation

$$
G_{j i}=h B_{\widetilde{\nu}, j i}=A_{i j} /\left(8 \pi c_{0} \widetilde{\nu}^{3}\right)=\frac{8 \pi^{3}}{3 h c_{0}\left(4 \pi \varepsilon_{0}\right)}\left|M_{j i}\right|^{2}
$$

where the transition moment $M_{j i}$ is given by

$$
\left.\left|M_{j i}\right|^{2}=\sum_{\rho}\left|\langle i| \mu_{\rho}\right| j\right\rangle\left.\right|^{2}
$$

Here the sum is over the three space-fixed cartesian axes and μ_{ρ} is a space-fixed component of the electric dipole moment. Inserting numerical values for the constants the relation between $G_{j i}$ and $M_{j i}$ may be expressed in a practical representation as

$$
\left(G_{j i} / \mathrm{pm}^{2}\right) \approx 41.6238\left|M_{j i} / \mathrm{D}\right|^{2}
$$

where $1 \mathrm{D} \approx 3.335641 \times 10^{-30} \mathrm{C} \mathrm{m}$ (D is the symbol of the debye) [62].
Net integrated absorption band intensities are usually characterized by one of the quantities A, S, \bar{S}, Γ, or $G_{\text {net }}$ as defined in the table. The relation between these quantities is given by the (approximate) equations

$$
G_{\mathrm{net}}=\Gamma / N_{\mathrm{A}} \approx A /\left(\widetilde{\nu}_{0} N_{\mathrm{A}}\right) \approx S / \widetilde{\nu}_{0} \approx \bar{S}\left(k T / \widetilde{\nu}_{0}\right)
$$

However, only the first equality is exact. The relation to A, \bar{S} and S involves dividing by the band centre wavenumber $\widetilde{\nu}_{0}$ for a band, to correct for the fact that A, \bar{S} and S are obtained by integrating over wavenumber rather than integrating over the logarithm of wavenumber used for $G_{\text {net }}$ and Γ. This correction is only approximate for a band (although negligible error is involved for single-line intensities in gases). The relation to \bar{S} involves the assumption that the gas is ideal (which is approximately true at low pressures), and also involves the temperature. Thus the quantities Γ and $G_{\text {net }}$ are most simply related to more fundamental quantities such as the Einstein transition probabilities and the transition moment, and are the preferred quantities for reporting integrated line or band intensities.

The situation is further complicated by some authors using the symbol S for any of the above quantities, particularly for any of the quantities here denoted A, S and \bar{S}. It is therefore particularly important to define quantities and symbols used in reporting integrated intensities.

For transitions between individual states any of the more fundamental quantities $G_{j i}, B_{\widetilde{\nu}, j i}, A_{i j}$, or $\left|M_{j i}\right|$ may be used; the relations are as given above, and are exact. The integrated absorption coefficient A should not be confused with the Einstein coefficient $A_{i j}$ (nor with absorbance, for which the symbol A is also used). Where such confusion might arise, we recommend writing \bar{A} for the band intensity expressed as an integrated absorption coefficient over wavenumber.

The SI unit and commonly used units of A, S, \bar{S}, Γ and G are as in the table below. Also given in the table are numerical transformation coefficients in commonly used units, from A, S, \bar{S}, and Γ to $G_{\text {net }}$.

Quantity	SI unit	Common unit	Transformation coefficient
A, \bar{A}	m mol		
-1	$\mathrm{~km} \mathrm{~mol}^{-1}$	$\left(G / \mathrm{pm}^{2}\right)=16.60540 \frac{A /\left(\mathrm{km} \mathrm{mol}^{-1}\right)}{\widetilde{\nu}_{0} / \mathrm{cm}^{-1}}$	
\bar{S}	$\mathrm{~Pa}^{-1} \mathrm{~m}^{-2}$	$\mathrm{~atm}^{-1} \mathrm{~cm}^{-2}$	$\left(G / \mathrm{pm}^{2}\right)=1.362603 \times 10^{-2} \frac{\left(\bar{S} / \mathrm{atm}^{-1} \mathrm{~cm}^{-2}\right)(T / \mathrm{K})}{\left(\widetilde{\nu}_{0} / \mathrm{cm}^{-1}\right)}$
S	m	cm	$\left(G / \mathrm{pm}^{2}\right)=10^{20} \frac{(S / \mathrm{cm})}{\widetilde{\nu}_{0} / \mathrm{cm}^{-1}}$
Γ	$\mathrm{~m}^{2} \mathrm{~mol}^{-1}$	$\mathrm{~cm}^{2} \mathrm{~mol}^{-1}$	$\left(G / \mathrm{pm}^{2}\right)=1.660540 \times 10^{-4}\left(\Gamma / \mathrm{cm}^{2} \mathrm{~mol}^{-1}\right)$
G	$\mathrm{~m}^{2}$	pm^{2}	

Quantities concerned with spectral absorption intensity and relations among these quantities are discussed in references [62-65], and a list of published measurements of line intensities and band intensities for gas phase infrared spectra may be found in references [63-65]. For relations between spectroscopic absorption intensities and kinetic radiative transition rates see also [66].

2.7.2 Conventions for absorption intensities in condensed phases

Provided transmission measurements are accurately corrected for reflection and other losses, the absorbance, absorption coefficient, and integrated absorption coefficient, A, that are described above may be used for condensed phases. The corrections typically used are adequate for weak and medium bands in neat liquids and solids and for bands of solutes in dilute solution. In order to make the corrections accurately for strong bands in neat liquids and solids, it is necessary to determine the real and imaginary refractive indices n and k, of the sample throughout the measured spectral range. Then, the resulting n and k themselves provide a complete description of the absorption intensity in the condensed phase. For liquids, this procedure requires knowledge of n and k of the cell windows. Reflection spectra are also processed to yield n and k. For non-isotropic solids all intensity properties must be defined with respect to specific crystal axes. If the n and k spectra are known, spectra of any optical property or measured quantity of the sample may be obtained from them. Physicists prefer to use the complex relative permittivity (see Section 2.3, p. 16), $\widehat{\varepsilon}_{\mathrm{r}}=\varepsilon_{\mathrm{r}}^{\prime}+\mathrm{i} \varepsilon_{\mathrm{r}}^{\prime \prime}=\operatorname{Re} \widehat{\varepsilon}_{\mathrm{r}}+\mathrm{i} \operatorname{Im} \widehat{\varepsilon}_{\mathrm{r}}$ instead of the complex refractive index $\widehat{n} . \varepsilon_{\mathrm{r}}^{\prime}=\operatorname{Re} \widehat{\varepsilon}_{\mathrm{r}}$ denotes the real part and $\varepsilon_{\mathrm{r}}^{\prime \prime}=\operatorname{Im} \widehat{\varepsilon}_{\mathrm{r}}$ the imaginary part of $\widehat{\varepsilon}_{\mathrm{r}}$, respectively. They are related through $\widehat{\varepsilon}_{\mathrm{r}}=\widehat{n}^{2}$, so that $\varepsilon_{\mathrm{r}}^{\prime}=n^{2}-k^{2}$ and $\varepsilon_{\mathrm{r}}^{\prime \prime}=2 n k$.

The refractive indices and relative permittivities are properties of the bulk phase. In order to obtain information about the molecules in the liquid free from dielectric effects of the bulk, the local field that acts on the molecules, $\boldsymbol{E}_{\mathrm{loc}}$, must be determined as a function of the applied field \boldsymbol{E}. A simple relation is the Lorentz local field, $\boldsymbol{E}_{\mathrm{loc}}=\boldsymbol{E}+\boldsymbol{P} / 3 \varepsilon_{0}$, where \boldsymbol{P} is the dielectric polarization. This local field is based on the assumption that long-range interactions are isotropic, so it is realistic only for liquids and isotropic solids.

Use of this local field gives the Lorentz-Lorenz formula (this relation is usually called the Clausius-Mossotti formula when applied to static fields) generalized to treat absorbing materials at
any wavenumber

$$
\frac{\widehat{\varepsilon}_{\mathrm{r}}(\widetilde{\nu})-1}{\widehat{\varepsilon}_{\mathrm{r}}(\widetilde{\nu})+2}=\frac{1}{3 \varepsilon_{0} V_{\mathrm{m}}} \widehat{\alpha}_{\mathrm{m}}(\widetilde{\nu})
$$

Here V_{m} is the molar volume, and $\widehat{\alpha}_{\mathrm{m}}$ is the complex molar polarizability (see Section 2.3, note 7, p. 16). The imaginary part $\alpha_{\mathrm{m}}{ }^{\prime \prime}$ of the complex molar polarizability describes the absorption by molecules in the liquid, corrected for the long-range isotropic dielectric effects but influenced by the anisotropic environment formed by the first few nearest neighbor molecules. The real part $\alpha_{\mathrm{m}}{ }^{\prime}$ is the molar polarizability (see sections 2.3 and 2.5) in the limit of infinite frequency.

The integrated absorption coefficient of a molecular absorption band in the condensed phase is described by $[67,68]$ (see note 1 , below)

$$
C_{j}=\frac{1}{4 \pi \varepsilon_{0}} \int_{\text {band } j} \widetilde{\nu} \alpha_{\mathrm{m}}^{\prime \prime \prime}(\widetilde{\nu}) \mathrm{d} \widetilde{\nu}
$$

Theoretical analysis usually assumes that the measured band includes the transition $j \leftarrow i$ with band centre wavenumber $\widetilde{\nu}_{0}$ and all of its hot-band transitions. Then

$$
C_{j}=\frac{N_{\mathrm{A}} \pi}{3 h c_{0}\left(4 \pi \varepsilon_{0}\right)} \widetilde{\nu}_{0} g\left(\left|M_{j i}\right|^{2}\right)
$$

where $\widetilde{\nu}_{0} g\left(\left|M_{j i}\right|^{2}\right)$ is the population-weighted sum over all contributing transitions of the wavenumber times the square of the electric dipole moment of the transition (g is in general a temperature dependent function which includes effects from the inhomogeneous band structure). The traditional relation between the gas and liquid phase values of the absorption coefficient of a given band j is the Polo-Wilson equation [69]

$$
A_{\mathrm{liq}}=\frac{\left(\bar{n}^{2}+2\right)^{2}}{9 \bar{n}} A_{\mathrm{gas}}
$$

where \bar{n} is the estimated average value of n through the absorption band. This relation is valid under the following conditions:
(i) bands are sufficiently weak, i.e. $2 n k+k^{2} \ll n^{2}$;
(ii) the double harmonic approximation yields a satisfactory theoretical approximation of the band structure; in this case the function g is nearly temperature independent and the gas and liquid phase values of g are equal;
(iii) $\widetilde{\nu}_{0}\left|M_{j i}\right|^{2}$ are identical in the gas and liquid phases.

A more recent and more general relation that requires only the second and the third of these conditions is $A_{\text {gas }}=8 \pi^{2} C_{j}$. It follows that for bands that meet all three of the conditions

$$
A_{\mathrm{liq}}=8 \pi^{2} C_{j} \frac{\left(\bar{n}^{2}+2\right)^{2}}{9 \bar{n}}
$$

This relation shows that, while the refractive index n is automatically incorporated in the integrated absorption coefficient C_{j} for a liquid, the traditional absorption coefficient A needs to be further corrected for permittivity or refraction.

[^4]
2.8 SOLID STATE

The quantities and their symbols given here have been selected from more extensive lists of IUPAP [4] and ISO [5.n]. See also the International Tables for Crystallography, Volume A [70].

Name	Symbol	Definition	SI unit	Notes
lattice vector, Bravais lattice vector	\boldsymbol{R}, \boldsymbol{R}_{0}			
fundamental translation				1
vectors for the crystal lattice	$\boldsymbol{a} ; \boldsymbol{b} ; \boldsymbol{c}$	$\boldsymbol{R}=n_{1} a_{1}+n_{2} \boldsymbol{a}_{2}+n_{3} a_{3}$		1
(angular) fundamental		$\boldsymbol{a}_{i} \cdot \boldsymbol{b}_{\boldsymbol{k}}=2 \pi \delta_{k}$		2
translation vectors for the reciprocal lattice	$\begin{aligned} & \boldsymbol{b}_{1} ; \boldsymbol{b}_{2} ; \boldsymbol{b}_{3}, \\ & \boldsymbol{a}^{*} ; \boldsymbol{b}^{*} ; \boldsymbol{c}^{2} \end{aligned}$	$a_{i} \cdot b_{k}=2 \pi \delta_{i k}$		
(angular) reciprocal lattice vector	G	$\begin{gathered} \boldsymbol{G}=h_{1} \boldsymbol{b}_{1}+h_{2} \boldsymbol{b}_{2}+h_{3} \boldsymbol{b}_{3}= \\ h_{1} \boldsymbol{a}^{*}+h_{2} \boldsymbol{b}^{*}+h_{3} \boldsymbol{c}^{*} \\ \boldsymbol{G} \cdot \boldsymbol{R}=2 \pi m=2 \pi \sum_{i} n_{i} h_{i} \end{gathered}$		1, 3
unit cell lengths	$a ; b ; c$		m	
unit cell angles	$\alpha ; \beta ; \gamma$		rad, 1	
reciprocal unit cell lengths	$a^{*} ; b^{*} ; c^{*}$		m^{-1}	
reciprocal unit cell angles	$\alpha^{*} ; \beta^{*} ; \gamma^{*}$		rad, 1	
fractional coordinates	$x ; y ; z$	$x=X / a$	1	4
atomic scattering factor	f	$f=E_{\mathrm{a}} / E_{\text {e }}$	1	5
structure factor	$F(h, k, l)$	$F=\sum^{N} f_{n} \mathrm{e}^{2 \pi \mathrm{i}\left(h x_{n}+k y_{n}+l z_{n}\right)}$	1	6
with indices h, k, l				
lattice plane spacing	d		m	
Bragg angle	θ	$n \lambda=2 d \sin \theta$	rad, 1	7
order of reflection	n		1	
order parameters,				
short range	σ		1	
long range	s		1	
Burgers vector	b		m	
particle position vector	$r_{j}, \boldsymbol{R}_{j}$		m	8
equilibrium position vector of an ion	\boldsymbol{R}_{0}		m	
displacement vector of an ion		$\boldsymbol{u}=\boldsymbol{R}-\boldsymbol{R}_{0}$	m	
Debye-Waller factor	B, D	$D=\mathrm{e}^{\left.-2<(\boldsymbol{q} \cdot \boldsymbol{u})^{2}\right\rangle}$	1	9

(1) n_{1}, n_{2} and n_{3} are integers. a, b and c are also called the lattice constants.
(2) Reciprocal lattice vectors are sometimes defined by $\boldsymbol{a}_{i} \cdot \boldsymbol{b}_{k}=\delta_{i k}$.
(3) m is an integer with $m=n_{1} h+n_{2} k+n_{3} l$.
(4) X denotes the coordinate of dimension length.
(5) E_{a} and E_{e} denote the scattering amplitudes for the atom and the isolated electron, respectively.
(6) N is the number of atoms in the unit cell.
(7) λ is the wavelength of the incident radiation.
(8) To distinguish between electron and ion position vectors, lower case and capital letters are used respectively. The subscript j relates to particle j.
(9) $\hbar \boldsymbol{q}$ is the momentum transfer in the scattering of neutrons, $<>$ denotes thermal averaging.

Name	Symbol	Definition	SI unit	Notes
Debye angular wavenumber	$q_{\mathrm{D}}, k_{\mathrm{D}}$	$k_{\mathrm{D}}=\left(C_{i} 6 \pi^{2}\right)^{1 / 3}$	m^{-1}	10
Debye angular frequency	$\omega_{\text {D }}$	$\omega_{\mathrm{D}}=k_{\mathrm{D}} c_{0}$	s^{-1}	10
Debye frequency	$\nu_{\text {D }}$	$\nu_{\mathrm{D}}=\omega_{\mathrm{D}} / 2 \pi$	s^{-1}	
Debye wavenumber	$\widetilde{\nu}_{\text {D }}$	$\widetilde{\nu}_{\mathrm{D}}=\nu_{\mathrm{D}} / c_{0}$	m^{-1}	10
Debye temperature	Θ_{D}	$\Theta_{\mathrm{D}}=h \nu_{\mathrm{D}} / k_{\mathrm{B}}$	K	
Grüneisen parameter	γ, Γ	$\gamma=\alpha V / \kappa C_{V}$	1	11
Madelung constant	α, \mathcal{M}	$E_{\mathrm{coul}}=\frac{\alpha N_{\mathrm{A}} z_{+} z_{-} e^{2}}{4 \pi \varepsilon_{0} R_{0}}$	1	12
density of states	N_{E}	$N_{E}=\mathrm{d} N(E) / \mathrm{d} E$	$\mathrm{J}^{-1} \mathrm{~m}^{-3}$	13
(spectral) density of vibrational modes	N_{ω}, g	$N_{\omega}=\mathrm{d} N(\omega) / \mathrm{d} \omega$	s m ${ }^{-3}$	14
resistivity tensor	$\boldsymbol{\rho},\left(\rho_{i k}\right)$	$\boldsymbol{E}=\boldsymbol{\rho} \cdot \boldsymbol{j}$	$\Omega \mathrm{m}$	15
conductivity tensor	$\boldsymbol{\sigma},\left(\sigma_{i k}\right)$	$\boldsymbol{j}=\boldsymbol{\sigma} \cdot \boldsymbol{E}$	$\mathrm{Sm} \mathrm{m}^{-1}$	15
residual resistivity	ρ_{R}		$\Omega \mathrm{m}$	
thermal conductivity tensor	$\lambda_{i k}$	$\boldsymbol{J}_{q}=-\lambda \cdot \nabla T$	W m ${ }^{-1} \mathrm{~K}^{-1}$	15
relaxation time	τ	$\tau=l / v_{\mathrm{F}}$	S	16
Lorenz coefficient	L	$L=\lambda / \sigma T$	$\mathrm{V}^{2} \mathrm{~K}^{-2}$	17
Hall coefficient	$A_{\mathrm{H}}, R_{\mathrm{H}}$	$\boldsymbol{E}=\rho \boldsymbol{j}+R_{\mathrm{H}}(\boldsymbol{B} \times \boldsymbol{j})$	$\mathrm{m}^{3} \mathrm{C}^{-1}$	
thermoelectric force	E		V	18
Peltier coefficient	Π	$E=\Pi \frac{\Delta T}{T}$	V	18
Thomson coefficient	$\mu,(\tau)$	$\mu=\Pi / T$	V K ${ }^{-1}$	
number density, number concentration	C, n, p		m^{-3}	19
band gap energy	$E_{\text {g }}$		J	20
donor ionization energy	$E_{\text {d }}$		J	20
acceptor ionization energy	$E_{\text {a }}$		J	20
Fermi energy	$E_{\mathrm{F}}, \varepsilon_{\mathrm{F}}$	$\varepsilon_{\mathrm{F}}=\lim _{T \rightarrow 0} \mu$	J	20
work function, electron work function	Φ	$\Phi=E_{\infty}-E_{\mathrm{F}}$	J	21
angular wave vector, propagation vector	k, q	$k=2 \pi / \lambda$	m^{-1}	22
Bloch function	$u_{k}(\boldsymbol{r})$	$\psi(\boldsymbol{r})=u_{k}(\boldsymbol{r}) \exp (\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{r})$	$\mathrm{m}^{-3 / 2}$	23
charge density of electrons	ρ	$\rho(\boldsymbol{r})=-e \psi^{*}(\boldsymbol{r}) \psi(\boldsymbol{r})$	C m ${ }^{-3}$	23, 24
effective mass	m^{*}		kg	25
mobility	μ	$\boldsymbol{v}_{\text {drift }}=\mu \boldsymbol{E}$	$\mathrm{m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$	25
mobility ratio	b	$b=\mu_{\mathrm{n}} / \mu_{\mathrm{p}}$	1	
diffusion coefficient	D	$\boldsymbol{j}=-D \nabla C$	$\mathrm{m}^{2} \mathrm{~s}^{-1}$	25, 26
diffusion length	L	$L=\sqrt{D \tau}$	m	25, 26
characteristic (Weiss) temperature	$\theta, \theta_{\mathrm{W}}$		K	
Curie temperature	$T_{\text {C }}$		K	
Néel temperature	T_{N}		K	

(10) C_{i} is the ion density, c_{0} is the speed of light in vacuum. q_{d} is equal to 2π times the inverse of the Debye cut-off wavelength of the elastic lattice wave.
(11) α is the cubic expansion coefficient, V the volume, κ the isothermal compressibility, and C_{V} the heat capacity at constant volume.
(12) $E_{\text {coul }}$ is the electrostatic interaction energy per mole of ion pairs with charges $z_{+} e$ and $-z_{-} e$.

2.8.1 Symbols for planes and directions in crystals

Miller indices of a crystal face, or of a single net plane
indices of the Bragg reflection from the set of parallel net planes $(h k l)$
indices of a set of all symmetrically equivalent crystal faces, or net planes
indices of a lattice direction (zone axis)
indices of a set of symmetrically equivalent lattice directions
In each of these cases, when the letter symbol is replaced by numbers it is customary to omit the commas. For a single plane or crystal face, or a specific direction, a negative number is indicated by a bar over the number.

Example ($\overline{1} 10$) denotes the parallel planes $h=-1, k=1, l=0$.
(i) Crystal lattice symbols

primitive	P
face-centred	F
body-centred	I
base-centred	$\mathrm{A} ; \mathrm{B} ; \mathrm{C}$
rhombohedral	R

(ii) Hermann-Mauguin symbols of symmetry operations

Operation	Symbol	Examples
n-fold rotation	n	$1 ; 2 ; 3 ; 4 ; 6$
n-fold inversion	\bar{n}	$\overline{1} ; \overline{2} ; \overline{3} ; \overline{4} ; \overline{6}$
n-fold screw	n_{k}	$2_{1} ; 3_{1} ; 3_{2} ; \ldots$
reflection	m	
glide	$a ; b ; c ; n ; d$	

(Notes continued)
(13) $N(E)$ is the total number of states of electronic energy less than E, divided by the volume.
(14) $N(\omega)$ is the total number of vibrational modes with circular frequency less than ω, divided by the volume.
(15) Tensors may be replaced by their corresponding scalar quantities in isotropic media. \boldsymbol{J}_{q} is the heat flux vector or thermal current density.
(16) The definition applies to electrons in metals; l is the mean free path, and v_{F} is the electron velocity on the Fermi sphere.
(17) λ and σ are the thermal and electrical conductivities in isotropic media.
(18) The substances to which the symbol applies are denoted by subscripts. The thermoelectric force is an electric potential difference induced by the gradient of the chemical potential.
(19) Specific number densities are denoted by subscripts: for electrons $n_{\mathrm{n}}, n_{-},(n)$; for holes n_{p}, $n_{+},(p)$; for donors n_{d}; for acceptors n_{a}; for the intrinsic number density $n_{i}\left(n_{i}{ }^{2}=n_{+} n_{-}\right)$.
(20) The commonly used unit for this quantity is $\mathrm{eV} . \mu$ is the chemical potential per entity.
(21) E_{∞} is the electron energy at rest at infinite distance [71].
(22) \boldsymbol{k} is used for particles, \boldsymbol{q} for phonons. Here, λ is the wavelength.
(23) $\psi(\boldsymbol{r})$ is a one-electron wavefunction.
(24) The total charge density is obtained by summing over all electrons.
(25) Subscripts n and p or - and + may be added to denote electrons and holes, respectively.
(26) \boldsymbol{j} is the particle flux density. D is the diffusion coefficient and τ the lifetime.

2.9 STATISTICAL THERMODYNAMICS

The names and symbols given here are in agreement with those recommended by IUPAP [4] and by ISO [5.h].

Name	Symbol	Definition	SI unit	Notes
number of entities	N		1	
number density of entities, number concentration	C	$C=N / V$	m	
Avogadro constant	$L, N_{\text {A }}$	$L=N / n$	mol^{-1}	1
Boltzmann constant	k, k_{B}		J K ${ }^{-1}$	
(molar) gas constant	R	$R=L k$	${ }^{1} \mathrm{~mol}^{-1}$	
molecular position vector	$\boldsymbol{r}(x, y, z)$		m	
molecular velocity vector	$\begin{aligned} & \boldsymbol{c}\left(c_{x}, c_{y}, c_{z}\right) \\ & \quad \boldsymbol{u}\left(u_{x}, u_{y}, u_{z}\right) \\ & \boldsymbol{v}\left(v_{x}, v_{y}, v_{z}\right) \end{aligned}$	$\boldsymbol{c}=\mathrm{d} \boldsymbol{r} / \mathrm{d} t$	$\mathrm{m} \mathrm{s}^{-1}$	
molecular momentum vector	$\boldsymbol{p}\left(p_{x}, p_{y}, p_{z}\right)$	$\boldsymbol{p}=m \boldsymbol{c}$	$\mathrm{m} \mathrm{s}^{-1}$	2
velocity distribution function	$f\left(c_{x}\right)$	$f=\left(\frac{m}{2 \pi k T}\right)^{1 / 2} \exp ($	$\mathrm{m}^{-1} \mathrm{~s}$	2
speed distribution function	$F(c)$	$F=4 \pi c^{2}\left(\frac{m}{2 \pi k T}\right)^{3 / 2}$	$\mathrm{m}^{-1} \mathrm{~s}$	2
average speed	$\begin{aligned} & \bar{c}, \bar{u}, \bar{v} \\ & \quad\langle c\rangle,\langle u\rangle,\langle v\rangle \end{aligned}$	$\bar{c}=\int c F(c) \mathrm{d} c$	ms^{-1}	
generalized coordinate	q		(varies)	3
generalized momentum	p	$p=\partial L / \partial \dot{q}$	(varies)	3
volume in phase space	Ω	$\Omega=(1 / h) \int p \mathrm{~d} q$	1	
probability	P, p		1	
statistical weight, degeneracy	g, d, W, ω, β		1	4
(cumulative) number of states	W, N	$W(E)=\sum_{i} \mathrm{H}\left(E-E_{i}\right)$	1	5, 6
density of states	$\rho(E)$	$\rho(E)=\mathrm{d} W(E) / \mathrm{d} E$	J^{-1}	
partition function,				
sum over states, single molecule	q, z	$q=\sum g_{i} \exp$	1	6
canonical ensemble, (system, or assembly)	Q, Z	$Q=\sum_{i} g_{i} \exp \left(-E_{i} / k T\right)$	1	6

(1) n is the amount of substance (or the chemical amount, enplethy). While the symbol N_{A} is used to honour Amedeo Avogadro, the symbol L is used in honour of Josef Loschmidt.
(2) m is the mass of the particle.
(3) If q is a length then p is a momentum. In the definition of p, L denotes the Lagrangian.
(4) β is sometimes used for a spin statistical weight and the degeneracy is also called polytropy. It is the number of linearly independent energy eigenfunctions for the same energy.
(5) $\mathrm{H}(x)$ is the Heaviside function (see Section 4.2, p. 107), W or $W(E)$ is the total number of quantum states with energy less than E.
(6) E_{i} denotes the energy of the i th level of a molecule or quantum system under consideration and g_{i} denotes its degeneracy.

Name	Symbol	Definition	SI units	Notes
microcanonical ensemble	Ω, z, Z	$Z=\sum_{i=1}^{Z} 1$	1	
partition function, sum over states, grand canonical ensemble	Ξ		1	
symmetry number	σ, s		1	
reciprocal energy parameter to replace temperature	β	$\beta=1 / k T$	J^{-1}	
characteristic temperature	Θ, θ		K	7
absolute activity	λ	$\lambda_{\mathrm{B}}=\exp \left(\mu_{\mathrm{B}} / R T\right)$	1	8
density operator	$\widehat{\rho}, \widehat{\sigma}$	$\widehat{\rho}=\sum p_{k}\left\|\Psi_{k}\right\rangle\left\langle\Psi_{k}\right\|$		9
density matrix	P, ρ	$\boldsymbol{P}=\left\{P_{m n}\right\}$	1	10
element	$P_{m n}, \rho_{m n}$	$P_{m n}=\left\langle\phi_{m}\right\| \hat{\rho}\left\|\phi_{n}\right\rangle$		10
statistical entropy	S	$S=-k \sum p_{i} \ln p_{i}$	J K ${ }^{-1}$	11

(7) Particular characteristic temperatures are denoted with subscripts, e.g. rotational $\Theta_{\mathrm{r}}=h c \widetilde{B} / k$, vibrational $\Theta_{\mathrm{v}}=h c \widetilde{\nu} / k$, Debye $\Theta_{\mathrm{D}}=h c \widetilde{\nu}_{\mathrm{D}} / k$, Einstein $\Theta_{\mathrm{E}}=h c \widetilde{\nu}_{\mathrm{E}} / k . \Theta$ is to be preferred over θ to avoid confusion with Celsius temperature.
(8) The definition applies to entities B. μ_{B} is the chemical potential (see Section 2.11, p. 57).
(9) $\left|\Psi_{k}\right\rangle$ refers to the quantum state k of the system and p_{k} to the probability of this state in an ensemble. If $p_{k}=1$ for a given state k one speaks of a pure state, otherwise of a mixture.
(10) The density matrix \boldsymbol{P} is defined by its matrix elements $P_{m n}$ in a set of basis states ϕ_{m}. Alternatively, one can write $P_{m n}=\sum_{k} p_{k} c_{m}{ }^{(k)} c_{n}{ }^{(k) *}$, where $c_{m}{ }^{(k)}$ is the (complex) coefficient of ϕ_{m} in the expansion of $\left|\Psi_{k}\right\rangle$ in the basis states $\left\{\phi_{i}\right\}$.
(11) In the expression for the statistical entropy, k is the Boltzmann constant and p_{i} the average population or probability for a quantum level. The equilibrium (maximum) entropy for a microcanonical ensemble results then as $S=k \ln Z$. A variety of other ensembles beyond the microcanonical, canonical, or grand canonical can be defined.

2.10 GENERAL CHEMISTRY

The symbols given by IUPAP [4] and by ISO [5.d,5.h] are in agreement with the recommendations given here.

Name	Symbol	Definition	SI unit	Notes
number of entities (e.g. molecules, atoms, ions, formula units)	N		1	
amount of substance, amount (chemical amount)	n	$n_{\mathrm{B}}=N_{\mathrm{B}} / L$	mol	1, 2
Avogadro constant	$L, N_{\text {A }}$		mol^{-1}	3
mass of atom, atomic mass	m_{a}, m			
mass of entity (molecule, formula unit)	m, m_{f}			4
atomic mass constant	m_{u}	$m_{\mathrm{u}}=m_{\mathrm{a}}\left({ }^{12} \mathrm{C}\right) / 12$	kg	5
molar mass	M	$M_{\mathrm{B}}=m / n_{\mathrm{B}}$	$\mathrm{kg} \mathrm{mol}^{-1}$	2, 6, 7
molar mass constant	M_{u}	$M_{\mathrm{u}}=m_{\mathrm{u}} N_{\mathrm{A}}$	$\mathrm{g} \mathrm{mol}^{-1}$	7, 8
relative molecular mass, (relative molar mass, molecular weight)	$M_{\text {r }}$	$M_{\mathrm{r}}=m_{\mathrm{f}} / m_{\mathrm{u}}$	1	8
relative atomic mass, (atomic weight)	$A_{\text {r }}$	$A_{\mathrm{r}}=m_{\mathrm{a}} / m_{\mathrm{u}}$	1	8
molar volume	$V_{\text {m }}$	$V_{\mathrm{m}, \mathrm{B}}=V / n_{\mathrm{B}}$	$\mathrm{m}^{3} \mathrm{~mol}^{-1}$	2, 6, 7
mass fraction	w	$w_{\mathrm{B}}=m_{\mathrm{B}} / \sum_{i} m_{i}$	1	2

(1) The words "of substance" may be replaced by the specification of the entity, e.g. "amount of oxygen atoms" or "amount of oxygen (or dioxygen, O_{2}) molecules". Note that "amount of oxygen" is ambiguous and should be used only if the meaning is clear from the context (see also the discussion in Section 2.10 .1 (v), p. 53).

Example When the amount of O_{2} is equal to $3 \mathrm{~mol}, n\left(\mathrm{O}_{2}\right)=3 \mathrm{~mol}$, the amount of $(1 / 2) \mathrm{O}_{2}$ is equal to 6 mol , and $n\left((1 / 2) \mathrm{O}_{2}\right)=6 \mathrm{~mol}$. Thus $n\left((1 / 2) \mathrm{O}_{2}\right)=2 n\left(\mathrm{O}_{2}\right)$.
(2) The definition applies to entities B which should always be indicated by a subscript or in parentheses, e.g. n_{B} or $n(\mathrm{~B})$. When the chemical composition is written out, parentheses should be used, $n\left(\mathrm{O}_{2}\right)$.
(3) The symbol N_{A} is used to honour Amedeo Avogadro, the symbol L is used in honour of Josef Loschmidt.
(4) Note that "formula unit" is not a unit (see examples in Section 2.10 .1 (iii), p. 50).
(5) m_{u} is equal to the unified atomic mass unit, with symbol u, i.e. $m_{\mathrm{u}}=1 \mathrm{u}$ (see Section 3.7, p. 92). The dalton, symbol Da , is used as an alternative name for the unified atomic mass unit.
(6) The definition applies to pure substance, where m is the total mass and V is the total volume. However, corresponding quantities may also be defined for a mixture as m / n and V / n, where $n=\sum_{i} n_{i}$. These quantities are called the mean molar mass and the mean molar volume respectively.
(7) These names, which include the word "molar", unfortunately use the name of a unit in the description of a quantity, which in principle is to be avoided.
(8) For historical reasons the terms "molecular weight" and "atomic weight" are still used. For molecules M_{r} is the relative molecular mass or "molecular weight". For atoms M_{r} is the relative atomic mass or "atomic weight", and the symbol A_{r} may be used. M_{r} may also be called the relative molar mass, $M_{\mathrm{r}, \mathrm{B}}=M_{\mathrm{B}} / M_{\mathrm{u}}$, where $M_{\mathrm{u}}=1 \mathrm{~g} \mathrm{~mol}^{-1}$. The standard atomic weights are listed in Section 6.2, p. 117.

(9) Here, V_{B} and V_{i} are the volumes of appropriate components prior to mixing. As other definitions are possible, e.g. ISO 31 [5], the term should not be used in accurate work without spelling out the definition.
(10) For condensed phases x is used, and for gaseous mixtures y may be used [72].
(11) Pressures are often expressed in the non-SI unit bar, where $1 \mathrm{bar}=10^{5} \mathrm{~Pa}$. The standard pressure $p^{\ominus}=1 \mathrm{bar}=10^{5} \mathrm{~Pa}$ (see Section 2.11.1 (v), p. 62, Section 7.2, p. 138, and the conversion table on p. 233). Pressures are often expressed in millibar or hectopascal, where $1 \mathrm{mbar}=10^{-3}$ bar $=100 \mathrm{~Pa}=1 \mathrm{hPa}$.
(12) The symbol and the definition apply to molecules B, which should be specified. In real (nonideal) gases, care is required in defining the partial pressure.
(13) V is the volume of the mixture. Quantities that describe compositions of mixtures can be found in [72].
(14) In this definition the symbol m is used with two different meanings: m_{B} denotes the molality of solute $\mathrm{B}, m_{\mathrm{A}}$ denotes the mass of solvent A (thus the unit mol kg^{-1}). This confusion of notation is avoided by using the symbol b for molality. A solution of molality $1 \mathrm{~mol} \mathrm{~kg}^{-1}$ is occasionally called a 1 molal solution, denoted 1 m solution; however, the symbol m must not be treated as a symbol for the unit mol kg^{-1} in combination with other units.
(15) The term number concentration and symbol C is preferred for mixtures. Care must be taken not to use the symbol n where it may be mistakenly interpreted to denote amount of substance.
(16) "Amount concentration" is an abbreviation of "amount-of-substance concentration". (The Clinical Chemistry Division of IUPAC recommends that amount-of-substance concentration be abbreviated to "substance concentration" $[14,73]$.) The word "concentration" is normally used alone where there is no risk of confusion, as in conjunction with the name (or symbol) of a chemical substance, or as contrast to molality (see Section 2.13, p. 70). In polymer science the word "concentration" and the symbol c is normally used for mass concentration. In the older literature this quantity was often called molarity, a usage that should be avoided due to the risk of confusion with the quantity molality. Units commonly used for amount concentration are mol^{-1} (or $\mathrm{mol} \mathrm{dm}^{-3}$), $\mathrm{mmol} \mathrm{L}^{-1}$, $\mu \mathrm{mol} \mathrm{L}^{-1}$ etc., often denoted $\mathrm{m}, \mathrm{mm}, \mu \mathrm{M}$ etc. (pronounced molar, millimolar, micromolar).

2.10.1 Other symbols and conventions in chemistry

(i) The symbols for the chemical elements

The symbols for the chemical elements are (in most cases) derived from their Latin names and consist of one or two letters which should always be printed in Roman (upright) type. A complete list is given in Section 6.2, p. 117. The symbol is not followed by a full stop except at the end of a sentence.

Examples I, U, Pa, C

The symbols have two different meanings (which also reflects on their use in chemical formulae and equations):
(a) On a microscopic level they can denote an atom of the element. For example, Cl denotes a chlorine atom having 17 protons and 18 or 20 neutrons (giving a mass number of 35 or 37), the difference being ignored. Its mass is on average 35.4527 u in terrestrial samples.
(b) On a macroscopic level they denote a sample of the element. For example, Fe denotes a sample of iron, and He a sample of helium gas. They may also be used as a shorthand to denote the element: "Fe is one of the most common elements in the Earth's crust."

The term nuclide implies an atom of specified atomic number (proton number) and mass number (nucleon number). A nuclide may be specified by attaching the mass number as a left superscript to the symbol for the element, as in ${ }^{14} \mathrm{C}$, or added after the name of the element, as in carbon-14. Nuclides having the same atomic number but different mass numbers are called isotopic nuclides or isotopes, as in ${ }^{12} \mathrm{C},{ }^{14} \mathrm{C}$. If no left superscript is attached, the symbol is read as including all isotopes in natural abundance: $n(\mathrm{Cl})=n\left({ }^{35} \mathrm{Cl}\right)+n\left({ }^{37} \mathrm{Cl}\right)$. Nuclides having the same mass number but different atomic numbers are called isobaric nuclides or isobars: ${ }^{14} \mathrm{C},{ }^{14} \mathrm{~N}$. The atomic number may be attached as a left subscript: ${ }_{6}^{14} \mathrm{C},{ }_{7}^{14} \mathrm{~N}$.

The ionic charge number is denoted by a right superscript, by the sign alone when the charge number is equal to plus one or minus one.

Examples

$$
\begin{aligned}
& \mathrm{Na}^{+} \\
& { }^{79} \mathrm{Br}^{-} \\
& \mathrm{Al}^{3+} \text { or } \mathrm{Al}^{+3} \\
& 3 \mathrm{~S}^{2-} \text { or } 3 \mathrm{~S}^{-2}
\end{aligned}
$$

a sodium positive ion (cation)
a bromine- 79 negative ion (anion, bromide ion)
aluminium triply positive ion
three sulfur doubly negative ions (sulfide ions)
Al^{3+} is commonly used in chemistry and recommended by [74]. The forms Al^{+3} and S^{-2}, although widely used, are obsolete [74], as well as the old notation $\mathrm{Al}^{+++}, \mathrm{S}^{=}$, and S^{--}.
(Notes continued)
(16) (continued) Thus M is often treated as a symbol for mol L^{-1}.
(17) Solubility may also be expressed in any units corresponding to quantities that denote relative composition, such as mass fraction, amount fraction, molality, volume fraction, etc.
(18) A denotes the surface area.
(19) The stoichiometric number is defined through the stoichiometric equation. It is negative for reactants and positive for products. The values of the stoichiometric numbers depend on how the reaction equation is written (see Section 2.10 .1 (iv), p. 52). $n_{\mathrm{B}, 0}$ denotes the value of n_{B} at "zero time", when $\xi=0 \mathrm{~mol}$.
(20) $\xi_{\max }$ is the value of ξ when at least one of the reactants is exhausted. For specific reactions, terms such as "degree of dissociation" and "degree of ionization" etc. are commonly used.

The right superscript position is also used to convey other information. Excited electronic states may be denoted by an asterisk.

Examples $\mathrm{H}^{*}, \mathrm{Cl}{ }^{*}$
Oxidation numbers are denoted by positive or negative Roman numerals or by zero (see also Section 2.10 .1 (iv), p. 52).

Examples $\mathrm{Mn}^{\mathrm{VII}}$, manganese(VII), $\mathrm{O}^{-\mathrm{II}}, \mathrm{Ni}^{0}$

The positions and meanings of indices around the symbol of the element are summarized as follows:

left superscript	mass number
left subscript	atomic number
right superscript	charge number, oxidation number, excitation
right subscript	number of atoms per entity (see Section 2.10.1 (iii) below)

(ii) Symbols for particles and nuclear reactions

proton	$\mathrm{p}, \mathrm{p}^{+}$	positron	$\mathrm{e}^{+}, \beta^{+}$	triton	t
antiproton	$\overline{\mathrm{p}}$	positive muon	μ^{+}	helion	$\mathrm{h}\left({ }^{3} \mathrm{He}^{2+}\right)$
neutron	n	negative muon	μ^{-}	α-particle	$\alpha\left({ }^{4} \mathrm{He}^{2+}\right)$
antineutron	\bar{n}	photon	γ	(electron) neutrino	ν_{e}
electron	$\mathrm{e}, \mathrm{e}^{-}, \beta^{-}$	deuteron	d	electron antineutrino	$\bar{\nu}_{\mathrm{e}}$

Particle symbols are printed in Roman (upright) type (but see Chapter 6, p. 113). The electric charge of particles may be indicated by adding the superscript + ,, or 0 ; e.g. $\mathrm{p}^{+}, \mathrm{n}^{0}$, e^{-}, etc. If the symbols p and e are used without a charge, they refer to the positive proton and negative electron respectively. A summary of recommended names for muonium and hydrogen atoms and their ions can be found in [75].

The meaning of the symbolic expression indicating a nuclear reaction should be as follows:
initial
nuclide $\left(\begin{array}{cc}\text { incoming particles } & , \text { outgoing particles } \\ \text { or quanta } & \text { or quanta }\end{array}\right) \begin{aligned} & \text { final } \\ & \text { nuclide }\end{aligned}$

Examples $\quad{ }^{14} \mathrm{~N}(\alpha, p){ }^{17} \mathrm{O}, \quad{ }^{59} \mathrm{Co}(\mathrm{n}, \gamma){ }^{60} \mathrm{Co}$
${ }^{23} \mathrm{Na}(\gamma, 3 \mathrm{n}){ }^{20} \mathrm{Na}, \quad{ }^{31} \mathrm{P}(\gamma, \mathrm{pn})^{29} \mathrm{Si}$
One can also use the standard notation from kinetics (see Section 2.12, p. 63).
Examples $\quad{ }_{7}^{14} \mathrm{~N}+\alpha \rightarrow{ }_{8}^{17} \mathrm{O}+\mathrm{p}$
$\mathrm{n} \rightarrow \mathrm{p}+\mathrm{e}+\bar{\nu}_{\mathrm{e}}$

(iii) Chemical formulae

As in the case of chemical symbols of elements, chemical formulae have two different meanings:
(a) On a microscopic level they denote one atom, one molecule, one ion, one radical, etc. The number of atoms in an entity (always an integer) is indicated by a right subscript, the numeral 1 being omitted. Groups of atoms may be enclosed in parentheses. Charge numbers of ions and excitation symbols are added as right superscripts to the formula. The radical nature of an entity may be expressed by adding a dot to the symbol. The nomenclature for radicals, ions, radical ions, and related species is described in $[76,77]$.

Examples $\mathrm{Xe}, \mathrm{N}_{2}, \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{Na}^{+}, \mathrm{SO}_{4}{ }^{2-}$
$\begin{array}{ll}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH} & \text { (a 2-methyl-2-propanol molecule) } \\ \mathrm{NO}_{2}^{*} & \text { (an excited nitrogen dioxide molecule) } \\ \text { NO } & \text { (a nitrogen oxide molecule) } \\ \text { NO } & \text { (a nitrogen oxide molecule, stressing its free radical character) }\end{array}$
In writing the formula for a complex ion, spacing for charge number can be added (staggered arrangement), as well as parentheses: $\mathrm{SO}_{4}{ }^{2-},\left(\mathrm{SO}_{4}\right)^{2-}$. The staggered arrangement is now recommended [74].

Specific electronic states of entities (atoms, molecules, ions) can be denoted by giving the electronic term symbol (see Section 2.6.3, p. 32) in parentheses. Vibrational and rotational states can be specified by giving the corresponding quantum numbers (see Section 2.6, p. 25 and 33).

Examples $\mathrm{Hg}\left({ }^{3} \mathrm{P}_{1}\right) \quad$ a mercury atom in the triplet-P-one state

$$
\begin{array}{ll}
\mathrm{HF}(v=2, J=6) & \begin{array}{l}
\text { a hydrogen fluoride molecule in the vibrational state } \\
\\
\mathrm{H}_{2} \mathrm{O}^{+}\left({ }^{2} \mathrm{~A}_{1}\right)
\end{array} \\
\text { a water molecule ion in the doublet-A-one state }
\end{array}
$$

(b) On a macroscopic level a formula denotes a sample of a chemical substance (not necessarily stable, or capable of existing in isolated form). The chemical composition is denoted by right subscripts (not necessarily integers; the numeral 1 being omitted). A "formula unit" (which is not a unit of a quantity!) is an entity specified as a group of atoms (see (iv) and (v) below).

Examples $\mathrm{Na}, \mathrm{Na}^{+}, \mathrm{NaCl}, \mathrm{Fe}_{0.91} \mathrm{~S}, \mathrm{XePtF}_{6}, \mathrm{NaCl}$

The formula can be used in expressions like $\rho\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$, mass density of sulfuric acid. When specifying amount of substance the formula is often multiplied with a factor, normally a small integer or a fraction, see examples in (iv) and (v). Less formally, the formula is often used as a shorthand ("reacting with $\mathrm{H}_{2} \mathrm{SO}_{4}$ "). Chemical formulae may be written in different ways according to the information they convey [15, 74, 78, 79]:

(1) Molecules differing only in isotopic composition are called isotopomers or isotopologues. For example, $\mathrm{CH}_{2} \mathrm{O}, \mathrm{CHDO}, \mathrm{CD}_{2} \mathrm{O}$ and $\mathrm{CH}_{2}{ }^{17} \mathrm{O}$ are all isotopomers or isotopologues of the formaldehyde molecule. It has been suggested [16] to reserve isotopomer for molecules of the same isotopic

(iv) Equations for chemical reactions

(a) On a microscopic level the reaction equation represents an elementary reaction (an event involving single atoms, molecules, and radicals), or the sum of a set of such reactions. Stoichiometric numbers are ± 1 (sometimes ± 2). A single arrow is used to connect reactants and products in an elementary reaction. An equal sign is used for the "net" reaction, the result of a set of elementary reactions (see Section 2.12.1, p. 68).

$$
\mathrm{H}+\mathrm{Br}_{2} \rightarrow \mathrm{HBr}+\mathrm{Br} \quad \text { one elementary step in } \mathrm{HBr} \text { formation }
$$

$\mathrm{H}_{2}+\mathrm{Br}_{2}=2 \mathrm{HBr} \quad$ the sum of several such elementary steps
(b) On a macroscopic level, different symbols are used connecting the reactants and products in the reaction equation, with the following meanings:

$$
\begin{array}{ll}
\mathrm{H}_{2}+\mathrm{Br}_{2}=2 \mathrm{HBr} & \text { stoichiometric equation } \\
\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr} & \text { net forward reaction } \\
\mathrm{H}_{2}+\mathrm{Br}_{2} \leftrightarrows 2 \mathrm{HBr} & \text { reaction, both directions } \\
\mathrm{H}_{2}+\mathrm{Br}_{2} \rightleftharpoons 2 \mathrm{HBr} & \text { equilibrium }
\end{array}
$$

The two-sided arrow \leftrightarrow should not be used for reactions to avoid confusion with resonance structures (see Section 2.10.1 (iii), p. 50).
Stoichiometric numbers are not unique. One and the same reaction can be expressed in different ways (without any change in meaning).

Examples The formation of hydrogen bromide from the elements can equally well be written in either of these two ways

$$
\begin{aligned}
& (1 / 2) \mathrm{H}_{2}+(1 / 2) \mathrm{Br}_{2}=\mathrm{HBr} \\
& \mathrm{H}_{2}+\mathrm{Br}_{2}=2 \mathrm{HBr}
\end{aligned}
$$

Ions not taking part in a reaction ("spectator ions") are often removed from an equation. Redox equations are often written so that the value of the stoichiometric number for the electrons transferred (which are normally omitted from the overall equation) is equal to ± 1.

Example $(1 / 5) \mathrm{KMn}^{\mathrm{VII}} \mathrm{O}_{4}+(8 / 5) \mathrm{HCl}=(1 / 5) \mathrm{Mn}^{\mathrm{II}} \mathrm{Cl}_{2}+(1 / 2) \mathrm{Cl}_{2}+(1 / 5) \mathrm{KCl}+(4 / 5) \mathrm{H}_{2} \mathrm{O}$ The oxidation of chloride by permanganate in acid solution can thus be represented in several (equally correct) ways.

Examples

$$
\begin{aligned}
& \mathrm{KMnO}_{4}+8 \mathrm{HCl}=\mathrm{MnCl}_{2}+(5 / 2) \mathrm{Cl}_{2}+\mathrm{KCl}+4 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{MnO}_{4}^{-}+5 \mathrm{Cl}^{-}+8 \mathrm{H}^{+}=\mathrm{Mn}^{2+}+(5 / 2) \mathrm{Cl}_{2}+4 \mathrm{H}_{2} \mathrm{O} \\
& (1 / 5) \mathrm{MnO}_{4}^{-}+\mathrm{Cl}^{-}+(8 / 5) \mathrm{H}^{+}=(1 / 5) \mathrm{Mn}^{2+}+(1 / 2) \mathrm{Cl}_{2}+(4 / 5) \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Similarly a reaction in an electrochemical cell may be written so that the electron number of an electrochemical cell reaction, z, (see Section 2.13 , p. 71) is equal to one:

$$
\text { Example }(1 / 3) \operatorname{In}^{0}(\mathrm{~s})+(1 / 2) \mathrm{Hg}_{2}{ }_{2} \mathrm{SO}_{4}(\mathrm{~s})=(1 / 6) \operatorname{In}^{\mathrm{III}}{ }_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+\mathrm{Hg}^{0}(\mathrm{l})
$$

where the symbols in parentheses denote the state of aggregation (see Section 2.10 .1 (vi), p. 54).
(Notes continued)
(1) (continued) composition but different structure, such as $\mathrm{CD}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{CD}(\mathrm{OD}) \mathrm{COOD}$ for which one also uses isotope-isomer.
(2) The lines in the connectivity, stereochemical, or resonance structure formula represent single, double, or triple bonds. They are also used as representing lone-pair electrons.
(3) In the Fischer projection the horizontal substituents are interpreted as above the plane of the paper whereas the vertical substituents are interpreted as behind the plane of the paper.
(4) The two-sided arrow represents the arrangement of valence electrons in resonance structures, such as benzene $\mathrm{C}_{6} \mathrm{H}_{6}$ and does not signify a reaction equation (see Section 2.10 .1 (iv), this page).

Symbolic Notation: A general chemical equation can be written as

$$
0=\sum_{j} \nu_{j} \mathrm{~B}_{j}
$$

where B_{j} denotes a species in the reaction and ν_{j} the corresponding stoichiometric number (negative for reactants and positive for products). The ammonia synthesis is equally well expressed in these two possible ways:
(i) $\quad(1 / 2) \mathrm{N}_{2}+(3 / 2) \mathrm{H}_{2}=\mathrm{NH}_{3} \quad \nu\left(\mathrm{~N}_{2}\right)=-1 / 2, \quad \nu\left(\mathrm{H}_{2}\right)=-3 / 2, \quad \nu\left(\mathrm{NH}_{3}\right)=+1$
(ii) $\quad \mathrm{N}_{2}+3 \mathrm{H}_{2}=2 \mathrm{NH}_{3} \quad \nu\left(\mathrm{~N}_{2}\right)=-1, \quad \nu\left(\mathrm{H}_{2}\right)=-3, \quad \nu\left(\mathrm{NH}_{3}\right)=+2$

The changes $\Delta n_{j}=n_{j}-n_{j, 0}$ in the amounts of any reactant and product j during the course of the reaction is governed by one parameter, the extent of reaction ξ, through the equation

$$
n_{j}=n_{j, 0}+\nu_{j} \xi
$$

The extent of reaction depends on how the reaction is written, but it is independent of which entity in the reaction is used in the definition. Thus, for reaction (i), when $\xi=2 \mathrm{~mol}$, then $\Delta n\left(\mathrm{~N}_{2}\right)=-1$ mol, $\Delta n\left(\mathrm{H}_{2}\right)=-3 \mathrm{~mol}$ and $\Delta n\left(\mathrm{NH}_{3}\right)=+2 \mathrm{~mol}$. For reaction (ii), when $\Delta n\left(\mathrm{~N}_{2}\right)=-1 \mathrm{~mol}$ then $\xi=1 \mathrm{~mol}$.

Matrix Notation: For multi-reaction systems it is convenient to write the chemical equations in matrix form

$$
A \nu=0
$$

where \boldsymbol{A} is the conservation (or formula) matrix with elements $A_{i j}$ representing the number of atoms of the i th element in the j th reaction species (reactant or product entity) and $\boldsymbol{\nu}$ is the stoichiometric number matrix with elements $\nu_{j k}$ being the stoichiometric numbers of the j th reaction species in the k th reaction. When there are N_{s} reacting species involved in the system consisting of N_{e} elements \boldsymbol{A} becomes an $N_{e} \times N_{s}$ matrix. Its nullity, $N(\boldsymbol{A})=N_{s}-\operatorname{rank}(\boldsymbol{A})$, gives the number of independent chemical reactions, N_{r}, and the $N_{s} \times N_{r}$ stoichiometric number matrix, $\boldsymbol{\nu}$, can be determined as the null space of $\boldsymbol{A} . \mathbf{0}$ is an $N_{e} \times N_{r}$ zero matrix [80].

(v) Amount of substance and the specification of entities

The quantity "amount of substance" or "chemical amount" ("Stoffmenge" in German, "quantité de matière" in French) has been used by chemists for a long time without a proper name. It was simply referred to as the "number of moles". This practice should be abandoned: the name of a physical quantity should not contain the name of a unit (few would use "number of metres" as a synonym for "length").

The amount of substance is proportional to the number of specified elementary entities of that substance; the proportionality constant is the same for all substances and is the reciprocal of the Avogadro constant. The elementary entities may be chosen as convenient, not necessarily as physically real individual particles. In the examples below, $(1 / 2) \mathrm{Cl}_{2},(1 / 5) \mathrm{KMnO}_{4}$, etc. are artificial in the sense that no such elementary entities exists. Since the amount of substance and all physical quantities derived from it depend on this choice it is essential to specify the entities to avoid ambiguities.

Examples | $n_{\mathrm{Cl}}, n(\mathrm{Cl})$ | amount of Cl , amount of chlorine atoms |
| :--- | :--- |
| $n\left(\mathrm{Cl}_{2}\right)$ | amount of Cl_{2}, amount of chlorine molecules |
| $n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ | amount of (entities) $\mathrm{H}_{2} \mathrm{SO}_{4}$ |
| $n\left((1 / 5) \mathrm{KMnO}_{4}\right)$ | amount of (entities) $(1 / 5) \mathrm{KMnO}_{4}$ |
| | $M\left(\mathrm{P}_{4}\right)$ |
| $c_{\mathrm{Cl}^{-}}, c\left(\mathrm{Cl}^{-}\right),\left[\mathrm{Cl}^{-}\right]$ | molar mass of tetraphosphorus P_{4} |
| $\rho\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ | amount concentration of $\mathrm{Cl}{ }^{-}$ |
| $\Lambda\left(\mathrm{MgSO}_{4}\right)$ | mass density of sulfuric acid |
| $\Lambda\left((1 / 2) \mathrm{MgSO}_{4}\right)$ | molar conductivity of (entities of) MgSO_{4} |
| $\lambda\left(\mathrm{Mg}^{2+}\right)$ | molar conductivity of (entities of) $(1 / 2) \mathrm{MgSO}_{4}$ |
| $\lambda\left((1 / 2) \mathrm{Mg}^{2+}\right)$ | ionic conductivity of (entities of) Mg^{2+} |
| | ionic conductivity of (entities of) $(1 / 2) \mathrm{Mg}^{2+}$ |

Using definitions of various quantities we can derive equations like

```
\(n\left((1 / 5) \mathrm{KMnO}_{4}\right)=5 n\left(\mathrm{KMnO}_{4}\right)\)
\(\lambda\left((1 / 2) \mathrm{Mg}^{2+}\right)=(1 / 2) \lambda\left(\mathrm{Mg}^{2+}\right)\)
\(\left[(1 / 2) \mathrm{H}_{2} \mathrm{SO}_{4}\right]=2\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]\)
```

(See also examples in Section 3.3, p. 88.)

Note that "amount of sulfur" is an ambiguous statement, because it might imply $n(\mathrm{~S}), n\left(\mathrm{~S}_{8}\right)$, or $n\left(\mathrm{~S}_{2}\right)$, etc. In most cases analogous statements are less ambiguous. Thus for compounds the implied entity is usually the molecule or the common formula entity, and for solid metals it is the atom.

$$
\begin{aligned}
\text { Examples } & " 2 \mathrm{~mol} \text { of water" implies } n\left(\mathrm{H}_{2} \mathrm{O}\right)=2 \mathrm{~mol} \\
& " 0.5 \mathrm{~mol} \text { of sodium chloride" implies } n(\mathrm{NaCl})=0.5 \mathrm{~mol} \\
& " 3 \mathrm{mmol} \text { of iron" implies } n(\mathrm{Fe})=3 \mathrm{mmol}
\end{aligned}
$$

Such statements should be avoided whenever there might be ambiguity.
In the equation $p V=n R T$ and in equations involving colligative properties, the entity implied in the definition of n should be an independently translating particle (a whole molecule for a gas), whose nature is unimportant. Quantities that describe compositions of mixtures can be found in [72].

(vi) States of aggregation

The following one-, two- or three-letter symbols are used to represent the states of aggregation of chemical species [1.j]. The letters are appended to the formula symbol in parentheses, and should be printed in Roman (upright) type without a full stop (period).

Examples $\quad \mathrm{HCl}(\mathrm{g}) \quad$ hydrogen chloride in the gaseous state
$C_{V}(\mathrm{f}) \quad$ heat capacity of a fluid at constant volume
$V_{\mathrm{m}}(\mathrm{lc}) \quad$ molar volume of a liquid crystal
$U(\mathrm{cr}) \quad$ internal energy of a crystalline solid
$\mathrm{MnO}_{2}(\mathrm{am}) \quad$ manganese dioxide as an amorphous solid
$\mathrm{MnO}_{2}(\mathrm{cr}, \mathrm{I}) \quad$ manganese dioxide as crystal form I
$\mathrm{NaOH}(\mathrm{aq}) \quad$ aqueous solution of sodium hydroxide
$\mathrm{NaOH}(\mathrm{aq}, \infty) \quad$ aqueous solution of sodium hydroxide at infinite dilution
$\Delta_{\mathrm{f}} H^{\ominus}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{l}\right) \quad$ standard enthalpy of formation of liquid water
The symbols g , l, etc. to denote gas phase, liquid phase, etc., are also sometimes used as a right superscript, and the Greek letter symbols α, β, etc. may be similarly used to denote phase α, phase β, etc. in a general notation.

Examples $\quad V_{\mathrm{m}}{ }^{1}, V_{\mathrm{m}}{ }^{\mathrm{s}}$ molar volume of the liquid phase, ... of the solid phase $S_{\mathrm{m}}{ }^{\alpha}, S_{\mathrm{m}}{ }^{\beta}$ molar entropy of phase α, \ldots of phase β

2.11 CHEMICAL THERMODYNAMICS

The names and symbols of the more generally used quantities given here are also recommended by IUPAP [4] and by ISO [5.d,5.h]. Additional information can be found in [1.d,1.j] and [81].

Name	Symbol	Definition	SI unit	Notes
heat	Q, q		J	1
work	W, w		J	1
internal energy	U	$\mathrm{d} U=\mathrm{d} Q+\mathrm{d} W$	J	1
enthalpy	H	$H=U+p V$	J	
thermodynamic temperature	$T,(\Theta)$			
International temperature	T_{90}		K	2
Celsius temperature entropy	θ, t	$\theta /{ }^{\circ} \mathrm{C}=T / \mathrm{K}-273.15$	${ }^{\circ} \mathrm{C}$	3
Helmholtz energy, (Helmholtz function)	A, F	$A=U-T S$	J	4
Gibbs energy, (Gibbs function)	G	$G=H-T S$	J	
Massieu function	J	$J=-A / T$	J K ${ }^{-1}$	
Planck function	Y	$Y=-G / T$	$\mathrm{J} \mathrm{K}^{-1}$	
surface tension	γ, σ	$\gamma=\left(\partial G / \partial A_{\mathrm{s}}\right)_{T, p, n_{i}}$	Jm^{-2}, $\mathrm{N} \mathrm{m}^{-1}$	
molar quantity X	$X_{\mathrm{m}},(\bar{X})$	$X_{\mathrm{m}}=X / n$	$[X] / \mathrm{mol}$	5, 6
specific quantity X	x	$x=X / m$	$[X] / \mathrm{kg}$	5, 6
pressure coefficient	β	$\beta=(\partial p / \partial T)_{V}$	$\mathrm{Pa} \mathrm{K}^{-1}$	
relative pressure coefficient compressibility,	α_{p}	$\alpha_{p}=(1 / p)(\partial p / \partial T)_{V}$	K^{-1}	
isothermal	κ_{T}	$\kappa_{T}=-(1 / V)(\partial V / \partial p)_{T}$	Pa^{-1}	
isentropic	κ_{S}	$\kappa_{S}=-(1 / V)(\partial V / \partial p)_{S}$	Pa^{-1}	
linear expansion coefficient	α_{l}	$\alpha_{l}=(1 / l)(\partial l / \partial T)$	K^{-1}	
cubic expansion coefficient	$\alpha, \alpha_{V}, \gamma$	$\alpha=(1 / V)(\partial V / \partial T)_{p}$	K^{-1}	7
heat capacity,		$C_{p}=(\partial H / \partial T)$		
at constant pressure	${ }^{C}$	$C_{p}=(\partial H / \partial T)_{p}$ $C_{V}=(\partial U / \partial T)_{V}$	$\begin{aligned} & \mathrm{J} \mathrm{~K}^{-1} \\ & \mathrm{~J}^{-1} \end{aligned}$	
at constant volume	C_{V}	$C_{V}=(\partial U / \partial T)_{V}$	J K ${ }^{-1}$	

(1) In the differential form, đ denotes an inexact differential. The given equation in integrated form is $\Delta U=Q+W . Q>0$ and $W>0$ indicate an increase in the energy of the system.
(2) This temperature is defined by the "International Temperature Scale of 1990 (ITS-90)" for which specific definitions are prescribed [82-84]. However, the CIPM, in its $94^{\text {th }}$ Meeting of October 2005, has approved a Recommendation T3 (2005) of the Comité Consultatif de Thermométrie, where the ITS-90 becomes one of several "mises en pratique" of the kelvin definition. The Technical Annex (2005) is available as Doc. CCT_05_33 [85]. It concerns the definition of a reference isotopic composition of hydrogen and water, when used for the realization of fixed points of the "mises en pratique".
(3) This quantity is sometimes misnamed "centigrade temperature".
(4) The symbol F is sometimes used as an alternate symbol for the Helmholtz energy.
(5) The definition applies to pure substance. However, the concept of molar and specific quantities (see Section 1.4, p. 6) may also be applied to mixtures. n is the amount of substance (see Section

(Notes continued)
(5) (continued) 2.10, notes 1 and 2, p. 47).
(6) X is an extensive quantity, whose SI unit is $[X]$. In the case of molar quantities the entities should be specified.

Example $\quad V_{\mathrm{m}, \mathrm{B}}=V_{\mathrm{m}}(\mathrm{B})=V / n_{\mathrm{B}}$ denotes the molar volume of B
(7) This quantity is also called the coefficient of thermal expansion, or the expansivity coefficient.
(8) Another set of "pressure virial coefficients" may be defined by

$$
p V_{\mathrm{m}}=R T\left(1+B_{p} p+C_{p} p^{2}+\cdots\right)
$$

(9) For a gas satisfying the van der Waals equation of state, given in the definition, the second virial coefficient is related to the parameters a and b in the van der Waals equation by

$$
B=b-a / R T
$$

(10) The symbol applies to entities B which should be specified. The bar may be used to distinguish partial molar X from X when necessary.

Example The partial molar volume of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in aqueous solution may be denoted $\bar{V}\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right.$, aq $)$, in order to distinguish it from the volume of the solution $V\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right.$, aq) .
(11) The definition applies to entities B which should be specified. The chemical potential can be defined equivalently by the corresponding partial derivatives of other thermodynamic functions (U, $H, A)$.
(12) The symbol ${ }^{\ominus}$ or ${ }^{\circ}$ is used to indicate standard. They are equally acceptable. Definitions of standard states are discussed in Section 2.11.1 (iv), p. 61. Whenever a standard chemical potential

Name	Symbol	Definition	SI unit	Notes
standard reaction Gibbs energy (function)	$\Delta_{\mathrm{r}} G^{\ominus}$	$\Delta_{\mathrm{r}} G^{\ominus}=\sum_{\mathrm{B}} \nu_{\mathrm{B}} \mu_{\mathrm{B}}^{\ominus}$	J mol ${ }^{-1}$	$\begin{aligned} & 12,14 \\ & 15,16 \end{aligned}$
affinity of reaction	A, \mathcal{A}	$\begin{aligned} A= & -(\partial G / \partial \xi)_{p, T} \\ & =-\sum_{\mathrm{B}} \nu_{\mathrm{B}} \mu_{\mathrm{B}} \end{aligned}$	J mol ${ }^{-1}$	15
standard reaction enthalpy	$\Delta_{\mathrm{r}} H^{\ominus}$	$\Delta_{\mathrm{r}} H^{\ominus}=\sum_{\mathrm{B}} \nu_{\mathrm{B}} H_{\mathrm{B}}{ }^{\ominus}$	$\mathrm{J} \mathrm{mol}^{-1}$	$\begin{aligned} & 12,14 \\ & 15,16 \end{aligned}$
standard reaction entropy	$\Delta_{\mathrm{r}} S^{\ominus}$	$\Delta_{\mathrm{r}} S^{\ominus}=\sum_{\mathrm{B}} \nu_{\mathrm{B}} S_{\mathrm{B}}{ }^{\ominus}$	$\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$	$12,14,15$
reaction quotient	Q	$Q=\prod_{\mathrm{B}} a_{\mathrm{B}}{ }^{\nu_{\mathrm{B}}}$	1	17
equilibrium constant equilibrium constant,	K^{\ominus}, K	$K^{\ominus}=\exp \left(-\Delta_{\mathrm{r}} G^{\ominus} / R T\right)$	1	$12,15,18$
pressure basis	K_{p}	$K_{p}=\prod_{\mathrm{B}} p_{\mathrm{B}}{ }^{\nu_{B}}$	$\mathrm{Pa}^{\Sigma \nu_{\mathrm{B}}}$	15, 19
concentration basis	K_{c}	$K_{c}=\prod_{\mathrm{B}} c_{\mathrm{B}}{ }^{\nu_{B}}$	$\left(\mathrm{mol} \mathrm{m}{ }^{-3}\right)^{\Sigma \nu_{\mathrm{B}}}$	15, 19
molality basis	K_{m}	$K_{m}=\prod_{\mathrm{B}} m_{\mathrm{B}}{ }^{\nu_{B}}$	$\left(\mathrm{mol} \mathrm{kg}{ }^{-1}\right)^{\Sigma \nu_{\mathrm{B}}}$	15, 19
fugacity	f, \widetilde{p}	$f_{\mathrm{B}}=\lambda_{\mathrm{B}} \lim _{p \rightarrow 0}\left(p_{\mathrm{B}} / \lambda_{\mathrm{B}}\right)_{T}$	Pa	11
fugacity coefficient	ϕ	$\phi_{\mathrm{B}}=f_{\mathrm{B}} / p_{\mathrm{B}}$	1	
Henry's law constant	k_{H}	$\begin{aligned} k_{\mathrm{H}, \mathrm{~B}} & =\lim _{x_{\mathrm{B}} \rightarrow 0}\left(f_{\mathrm{B}} / x_{\mathrm{B}}\right) \\ & =\left(\partial f_{\mathrm{B}} / \partial x_{\mathrm{B}}\right)_{x_{\mathrm{B}}=0} \end{aligned}$	Pa	11, 20

(Notes continued)
(12) (continued) μ^{\ominus} or a standard equilibrium constant K^{\ominus} or other standard quantity is used, the standard state must be specified.
(13) In the defining equation given here, the pressure dependence of the activity has been neglected as is often done for condensed phases at atmospheric pressure.
An equivalent definition is $a_{\mathrm{B}}=\lambda_{\mathrm{B}} / \lambda_{\mathrm{B}}{ }^{\ominus}$, where $\lambda_{\mathrm{B}}{ }^{\ominus}=\exp \left(\mu_{\mathrm{B}}{ }^{\theta} / R T\right)$. The definition of μ^{\ominus} depends on the choice of the standard state (see Section 2.11.1 (iv), p. 61).
(14) The symbol r indicates reaction in general. In particular cases r can be replaced by another appropriate subscript, e.g. $\Delta_{\mathrm{f}} H^{\ominus}$ denotes the standard molar enthalpy of formation; see Section 2.11 .1 (i), p. 59 below for a list of subscripts. Δ_{r} can be interpreted as operator symbol $\Delta_{\mathrm{r}} \stackrel{\text { def }}{=} \partial / \partial \xi$.
(15) The reaction must be specified for which this quantity applies.
(16) Reaction enthalpies (and reaction energies in general) are usually quoted in $\mathrm{kJ} \mathrm{mol}^{-1}$. In the older literature $\mathrm{kcal} \mathrm{mol}^{-1}$ is also common, however, various calories exist. For the thermochemical calorie, $1 \mathrm{kcal}=4.184 \mathrm{~kJ}$ (see Section 7.2 , p. 137).
(17) This quantity applies in general to a system which is not in equilibrium.
(18) This quantity is equal to Q in equilibrium, when the affinity is zero. It is dimensionless and its value depends on the choice of standard state, which must be specified. ISO [5.h] and the IUPAC Thermodynamics Commission [81] recommend the symbol K^{\ominus} and the name "standard equilibrium constant". Many chemists prefer the symbol K and the name "thermodynamic equilibrium constant".
(19) These quantities are not in general dimensionless. One can define in an analogous way an equilibrium constant in terms of fugacity K_{f}, etc. At low pressures K_{p} is approximately related to K^{\ominus} by the equation $K^{\ominus} \approx K_{p} /\left(p^{\ominus}\right)^{\Sigma \nu_{\mathrm{B}}}$, and similarly in dilute solutions K_{c} is approximately related to K^{\ominus} by $K^{\ominus} \approx K_{c} /\left(c^{\ominus}\right)^{\Sigma \nu_{\mathrm{B}}}$; however, the exact relations involve fugacity coefficients or activity coefficients [81].

Name	Symbol	Definition	SI unit	Notes
activity coefficient				
referenced to Raoult's law	f	$f_{\mathrm{B}}=a_{\mathrm{B}} / x_{\mathrm{B}}$	1	11, 21
referenced to Henry's law				
molality basis	γ_{m}	$a_{m, \mathrm{~B}}=\gamma_{m, \mathrm{~B}} m_{\mathrm{B}} / m^{\ominus}$		11, 22
concentration basis	γ_{c}	$a_{c, \mathrm{~B}}=\gamma_{c, \mathrm{~B}} c_{\mathrm{B}} / c^{\ominus}$	1	11, 22
mole fraction basis	γ_{x}	$a_{x, \mathrm{~B}}=\gamma_{x, \mathrm{~B}} x_{\mathrm{B}}$		10, 21
ionic strength,				
molality basis	I_{m}, I	$I_{m}=(1 / 2) \sum m_{i} z_{i}{ }^{2}$	mol kg	
concentration basis	I_{c}, I	$I_{c}=(1 / 2) \sum_{i} c_{i} z_{i}{ }^{2}$	mol m	
osmotic coefficient,				
molality basis	ϕ_{m}	$\phi_{m}=\frac{\mu_{\mathrm{A}}{ }^{*}-\mu_{\mathrm{A}}}{R T M_{\mathrm{A}} \sum m_{\mathrm{B}}}$	1	23, 24
		$I_{\mathrm{A}} \sum_{\mathrm{B}} m_{\mathrm{B}}$		
mole fraction basis	ϕ_{x}	$\phi_{x}=-\frac{\mu_{\mathrm{B}}{ }^{*}-\mu_{\mathrm{B}}}{R T \ln x_{\mathrm{B}}}$	1	22, 23
osmotic pressure	Π	$\Pi=-\left(R T / V_{\mathrm{A}}\right) \ln a_{\mathrm{A}}$	Pa	23, 25

(Notes continued)
(19) (continued) The equilibrium constant of dissolution of an electrolyte (describing the equilibrium between excess solid phase and solvated ions) is often called a solubility product, denoted $K_{\text {sol }}$ or $K_{\text {s }}$ (or $K_{\mathrm{sol}}{ }^{\ominus}$ or $K_{\mathrm{s}}{ }^{\ominus}$ as appropriate). In a similar way the equilibrium constant for an acid dissociation is often written K_{a}, for base hydrolysis K_{b}, and for water dissociation K_{w}.
(20) Henry's law is sometimes expressed in terms of molalities or concentration and then the corresponding units of Henry's law constant are $\mathrm{Pa} \mathrm{kg} \mathrm{mol}{ }^{-1}$ or $\mathrm{Pa} \mathrm{m}^{3} \mathrm{~mol}^{-1}$, respectively.
(21) This quantity applies to pure phases, substances in mixtures, or solvents.
(22) This quantity applies to solutes.
(23) A is the solvent, B is one or more solutes.
(24) The entities B are independent solute molecules, ions, etc. regardless of their nature. Their amount is sometimes expressed in osmoles (meaning a mole of osmotically active entities), but this use is discouraged.
(25) This definition of osmotic pressure applies to an incompressible fluid.

2.11.1 Other symbols and conventions in chemical thermodynamics

A more extensive description of this subject can be found in [81].
(i) Symbols used as subscripts to denote a physical chemical process or reaction These symbols should be printed in Roman (upright) type, without a full stop (period).

adsorption	ads
atomization	at
combustion reaction	c
dilution (of a solution)	dil
displacement	dpl

formation reaction	f
immersion	imm
melting, fusion (solid \rightarrow liquid)	fus
mixing of fluids	mix
reaction in general	r
solution (of solute in solvent)	sol
sublimation (solid \rightarrow gas)	sub
transition (between two phases)	trs
triple point	tp
vaporization, evaporation (liquid \rightarrow gas)	vap

(ii) Recommended superscripts
activated complex, transition state \ddagger, \neq apparent app
excess quantity E
ideal id
infinite dilution ∞
pure substance
standard
*
θ, \circ

(iii) Examples of the use of the symbol Δ

The symbol Δ denotes a change in an extensive thermodynamic quantity for a process. The addition of a subscript to the Δ denotes a change in the property.

Examples $\quad \Delta_{\text {vap }} H=\Delta_{1}{ }^{\mathrm{g}} H=H(\mathrm{~g})-H(\mathrm{l})$ for the molar enthalpy of vaporization.
$\Delta_{\text {vap }} H=40.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for water at $100^{\circ} \mathrm{C}$ under its own vapor pressure.
This can also be written $\Delta H_{\text {vap }}$, but this usage is not recommended.
The subscript r is used to denote changes associated with a chemical reaction. Symbols such as $\Delta_{\mathrm{r}} H$ are defined by the equation

$$
\Delta_{\mathrm{r}} H=\sum_{\mathrm{B}} \nu_{\mathrm{B}} H_{\mathrm{B}}=(\partial H / \partial \xi)_{T, p}
$$

It is thus essential to specify the stoichiometric reaction equation when giving numerical values for such quantities in order to define the extent of reaction ξ and the value of the stoichiometric numbers ν_{B}.

$$
\begin{array}{ll}
\text { Example } \quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})=2 \mathrm{NH}_{3}(\mathrm{~g}), \quad & \Delta_{\mathrm{r}} H^{\ominus}(298.15 \mathrm{~K})=-92.4 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \Delta_{\mathrm{r}} S^{\ominus}(298.15 \mathrm{~K})=-199 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
\end{array}
$$

The mol^{-1} in the units identifies the quantities in this example as the change per extent of reaction. They may be called the molar enthalpy and entropy of reaction, and a subscript m may be added to the symbol to emphasize the difference from the integral quantities if desired.

The standard reaction quantities are particularly important. They are defined by the equations

$\Delta_{\mathrm{r}} H^{\ominus}$	$=\sum_{\mathrm{B}} \nu_{\mathrm{B}} H_{\mathrm{B}}{ }^{\theta}$
$\Delta_{\mathrm{r}} S^{\ominus}$	$=\sum_{\mathrm{B}} \nu_{\mathrm{B}} S_{\mathrm{B}}{ }^{\theta}$
$\Delta_{\mathrm{r}} G^{\ominus}$	$=\sum_{\mathrm{B}} \nu_{\mathrm{B}} \mu_{\mathrm{B}}{ }^{\theta}$

It is important to specify notation with care for these symbols. The relation to the affinity of the reaction is

$$
-A=\Delta_{\mathrm{r}} G=\Delta_{\mathrm{r}} G^{\ominus}+R T \ln \left(\prod_{\mathrm{B}}{a_{\mathrm{B}}}^{\nu_{\mathrm{B}}}\right)
$$

and the relation to the standard equilibrium constant is $\Delta_{\mathrm{r}} G^{\ominus}=-R T \ln K^{\ominus}$. The product of the activities is the reaction quotient Q, see p. 58 .

The term combustion and symbol c denote the complete oxidation of a substance. For the definition of complete oxidation of substances containing elements other than C, H and O see [86]. The corresponding reaction equation is written so that the stoichiometric number ν of the substance is -1 .

$$
\begin{array}{ll}
\text { Example } & \text { The standard enthalpy of combustion of gaseous methane is } \\
& \Delta_{\mathrm{c}} H^{\ominus}\left(\mathrm{CH}_{4}, \mathrm{~g}, 298.15 \mathrm{~K}\right)=-890.3 \mathrm{~kJ} \mathrm{~mol}^{-1} \text {, implying the reaction } \\
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) .
\end{array}
$$

The term formation and symbol f denote the formation of the substance from elements in their reference state (usually the most stable state of each element at the chosen temperature and standard pressure). The corresponding reaction equation is written so that the stoichiometric number ν of the substance is +1 .
Example The standard entropy of formation of crystalline mercury(II) chloride is $\Delta_{\mathrm{f}} S^{\ominus}\left(\mathrm{HgCl}_{2}, \mathrm{cr}, 298.15 \mathrm{~K}\right)=-154.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, implying the reaction $\mathrm{Hg}(\mathrm{l})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{HgCl}_{2}(\mathrm{cr})$.
The term atomization, symbol at, denotes a process in which a substance is separated into its constituent atoms in the ground state in the gas phase. The corresponding reaction equation is written so that the stoichiometric number ν of the substance is -1 .
Example The standard (internal) energy of atomization of liquid water is

$$
\Delta_{\mathrm{at}} U^{\ominus}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{l}\right)=625 \mathrm{~kJ} \mathrm{~mol}^{-1} \text {, implying the reaction }
$$

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}(\mathrm{~g})+\mathrm{O}(\mathrm{~g})
$$

(iv) Standard states [1.j] and [81]

The standard chemical potential of substance B at temperature $T, \mu \mathrm{~B}^{\ominus}(T)$, is the value of the chemical potential under standard conditions, specified as follows. Three differently defined standard states are recognized.

For a gas phase. The standard state for a gaseous substance, whether pure or in a gaseous mixture, is the (hypothetical) state of the pure substance B in the gaseous phase at the standard pressure $p=p^{\ominus}$ and exhibiting ideal gas behavior. The standard chemical potential is defined as

$$
\mu_{\mathrm{B}}^{\ominus}(T)=\lim _{p \rightarrow 0}\left[\mu_{\mathrm{B}}\left(T, p, y_{\mathrm{B}}, \ldots\right)-R T \ln \left(y_{\mathrm{B}} p / p^{\ominus}\right)\right]
$$

For a pure phase, or a mixture, or a solvent, in the liquid or solid state. The standard state for a liquid or solid substance, whether pure or in a mixture, or for a solvent, is the state of the pure substance B in the liquid or solid phase at the standard pressure $p=p^{\ominus}$. The standard chemical potential is defined as

$$
\mu_{\mathrm{B}}(T)=\mu_{\mathrm{B}}^{*}\left(T, p^{\ominus}\right)
$$

For a solute in solution. For a solute in a liquid or solid solution the standard state is referenced to the ideal dilute behavior of the solute. It is the (hypothetical) state of solute B at the standard molality m^{\ominus}, standard pressure p^{\ominus}, and behaving like the infinitely dilute solution. The standard chemical potential is defined as

$$
\mu_{\mathrm{B}}{ }^{\ominus}(T)=\left[\mu_{\mathrm{B}}\left(T, p^{\ominus}, m_{\mathrm{B}}, \ldots\right)-R T \ln \left(m_{\mathrm{B}} / m^{\ominus}\right)\right]^{\infty}
$$

The chemical potential of the solute B as a function of the molality m_{B} at constant pressure $p=p^{\ominus}$ is then given by the expression

$$
\mu_{\mathrm{B}}\left(m_{\mathrm{B}}\right)=\mu_{\mathrm{B}}{ }^{\ominus}+R T \ln \left(m_{\mathrm{B}} \gamma_{m, \mathrm{~B}} / m^{\ominus}\right)
$$

Sometimes (amount) concentration c is used as a variable in place of molality m; both of the above equations then have c in place of m throughout. Occasionally mole fraction x is used in place of m; both of the above equations then have x in place of m throughout, and $x^{\ominus}=1$. Although the standard state of a solute is always referenced to ideal dilute behavior, the definition of the standard state and the value of the standard chemical potential μ^{\ominus} are different depending on whether molality m, concentration c, or mole fraction x is used as a variable.
(v) Standard pressures, molality, and concentration

In principle one may choose any values for the standard pressure p^{\ominus}, the standard molality m^{\ominus}, and the standard concentration c^{\ominus}, although the choice must be specified. For example, in tabulating data appropriate to high pressure chemistry it may be convenient to choose a value of $p^{\ominus}=100 \mathrm{MPa}(=1 \mathrm{kbar})$.

In practice, however, the most common choice is

$$
\begin{aligned}
p^{\ominus} & =0.1 \mathrm{MPa}=100 \mathrm{kPa}(=1 \mathrm{bar}) \\
m^{\ominus} & =1 \mathrm{~mol} \mathrm{~kg}^{-1} \\
c^{\ominus} & =1 \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$

These values for m^{θ} and c^{θ} are universally accepted. The value for $p^{\theta}=100 \mathrm{kPa}$, is the IUPAC recommendation since 1982 [1.j], and is recommended for tabulating thermodynamic data. Prior to 1982 the standard pressure was usually taken to be $p^{\ominus}=101325 \mathrm{~Pa}$ ($=1 \mathrm{~atm}$, called the standard atmosphere). In any case, the value for p^{\ominus} should be specified.

The conversion of values corresponding to different p^{\ominus} is described in [87-89]. The newer value of $p^{\ominus}, 100 \mathrm{kPa}$ is sometimes called the standard state pressure.

(vi) Biochemical standard states

Special standard states that are close to physiological conditions are often chosen. The biochemical standard state is often chosen at $\left[\mathrm{H}^{+}\right]=10^{-7} \mathrm{~mol} \mathrm{dm}{ }^{-3}$. The concentrations of the solutes may be grouped together as for example, the total phosphate concentration rather than the concentration of each component, $\left(\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}, \mathrm{HPO}_{4}{ }^{2-}, \mathrm{PO}_{4}{ }^{3-}\right)$, separately. Standard and other reference states must be specified with care [90,91].

(vii) Thermodynamic properties

Values of many thermodynamic quantities represent basic chemical properties of substances and serve for further calculations. Extensive tabulations exist, e.g. [92-96]. Special care has to be taken in reporting the data and their uncertainties [97,98].
(viii) Reference state (of an element)

The state in which the element is stable at the chosen standard state pressure and for a given temperature [16].

2.12 CHEMICAL KINETICS AND PHOTOCHEMISTRY

The recommendations given here are based on previous IUPAC recommendations [1.c,1.k] and [17], which are not in complete agreement. Recommendations regarding photochemistry are given in [60] and for recommendations on reporting of chemical kinetics data see also [99]. A glossary of terms used in chemical kinetics has been given in [100].

Name	Symbol	Definition	SI unit	Notes
rate of change of quantity X	\dot{X}	$\dot{X}=\mathrm{d} X / \mathrm{d} t$	(varies)	1
rate of conversion	ξ	$\dot{\xi}=\mathrm{d} \xi / \mathrm{d} t$	$\mathrm{mol} \mathrm{s}{ }^{-1}$	2
rate of concentration change (due to chemical reaction)	$r_{\mathrm{B}}, v_{\mathrm{B}}$	$r_{\mathrm{B}}=\mathrm{d} c_{\mathrm{B}} / \mathrm{d} t$	mol m ${ }^{-3}$	3, 4
rate of reaction (based on amount concentration)	v, v_{c}	$\begin{aligned} v & =\nu_{\mathrm{B}}{ }^{-1} \mathrm{~d} c_{\mathrm{B}} / \mathrm{d} t \\ & =\dot{\xi} / V \end{aligned}$	$\mathrm{mol} \mathrm{m}{ }^{-3} \mathrm{~s}^{-1}$	2, 4
rate of reaction (based on number concentration), (reaction rate)	v, v_{C}	$v_{C}=\nu_{\mathrm{B}}{ }^{-1} \mathrm{~d} C_{\mathrm{B}} / \mathrm{d} t$	$\mathrm{m}^{-3} \mathrm{~s}^{-}$	
partial order of reaction	$m_{\mathrm{B}}, n_{\mathrm{B}}$	$v=k \prod_{\mathrm{D}} c_{\mathrm{B}}{ }^{m_{\mathrm{B}}}$		5
overall order of reaction	m, n	$m=\sum_{\mathrm{B}}^{\mathrm{B}} m_{\mathrm{B}}$		
rate constant, rate coefficient	$k, k(T)$	$v=k \prod_{\mathrm{B}}^{\mathrm{B}} c_{\mathrm{B}}{ }^{m_{\mathrm{B}}}$	$\left(\mathrm{m}^{3} \mathrm{~mol}^{-1}\right)^{m-1} \mathrm{~s}^{-1}$	6

(1) E.g. rate of pressure change $\dot{p}=\mathrm{d} p / \mathrm{d} t$, for which the SI unit is $\mathrm{Pa} \mathrm{s}^{-1}$, rate of entropy change $\mathrm{d} S / \mathrm{d} t$ with SI unit $\mathrm{J} \mathrm{K}^{-1} \mathrm{~s}^{-1}$.
(2) The reaction must be specified, for which this quantity applies, by giving the stoichiometric equation.
(3) The symbol and the definition apply to entities B.
(4) Note that r_{B} and v can also be defined on the basis of partial pressure, number concentration, surface concentration, etc., with analogous definitions. If necessary differently defined rates of reaction can be distinguished by a subscript, e.g. $v_{p}=\nu_{\mathrm{B}}{ }^{-1} \mathrm{~d} p_{\mathrm{B}} / \mathrm{d} t$, etc. Note that the rate of reaction can only be defined for a reaction of known and time-independent stoichiometry, in terms of a specified reaction equation; also the second equation for the rate of reaction follows from the first only if the volume V is constant and c_{B} is uniform throughout (more generally, the definition applies to local concentrations). The derivatives must be those due to the chemical reaction considered; in open systems, such as flow systems, effects due to input and output processes must be taken into account separately, as well as transport processes in general by the equation

$$
\left(\mathrm{d} c_{\mathrm{B}} / \mathrm{d} t\right)_{\text {total }}=\left(\mathrm{d} c_{\mathrm{B}} / \mathrm{d} t\right)_{\text {reaction }}+\left(\mathrm{d} c_{\mathrm{B}} / \mathrm{d} t\right)_{\text {transport }}
$$

(5) The symbol applies to reactant B. The symbol m is used to avoid confusion with n for amount of substance. The order of reaction is only defined if the particular rate law applies. m is a real number.
(6) Rate constants k and pre-exponential factors A are usually quoted in either $\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1}\right)^{m-1}$ s^{-1} or on a molecular scale in $\left(\mathrm{cm}^{3}\right)^{m-1} \mathrm{~s}^{-1}$ or $\left(\mathrm{cm}^{3} \text { molecule }{ }^{-1}\right)^{m-1} \mathrm{~s}^{-1}$. Note that "molecule" is not a unit, but is often included for clarity, although this does not conform to accepted usage. $k(T)$ is written to stress temperature dependence. Rate constants are frequently quoted as decadic logarithms.

Example second order reaction $k=10^{8.2} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ or $\lg \left(k / \mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)=8.2$
or alternatively $\quad k=10^{-12.6} \mathrm{~cm}^{3} \mathrm{~s}^{-1} \quad$ or $\lg \left(k / \mathrm{cm}^{3} \mathrm{~s}^{-1}\right)=-12.6$

Name	Symbol	Definition	SI unit	Notes
rate constant of	$k_{\text {uni }}, k_{\text {uni }}\left(T, c_{\mathrm{M}}\right)$	$v=k_{\text {uni }} c_{\mathrm{B}}$	s^{-1}	7
unimolecular reaction				
at high pressure	k_{∞}	$k_{\text {uni }}\left(c_{\text {M }} \rightarrow \infty\right)$	S^{-1}	7
at low pressure	k_{0}	$v=k_{0} c_{\mathrm{M}} c_{\mathrm{B}}$		7
Boltzmann constant	k, k_{B}		J K ${ }^{-1}$	
half life	$t_{1 / 2}$	$c\left(t_{1 / 2}\right)=c(0) / 2$	S	
relaxation time, lifetime, mean life	τ	$\Delta c(\tau)=\Delta c(0) / \mathrm{e}$	S	8
(Arrhenius) activation energy	$E_{\text {A }}, E_{\text {a }}$	$E_{\mathrm{A}}=R T^{2} \mathrm{~d}(\ln k) / \mathrm{d} T$	J mol ${ }^{-1}$	9
pre-exponential factor, frequency factor	A	$A=k \exp \left(E_{\mathrm{A}} / R T\right)$	$\left(\mathrm{m}^{3} \mathrm{~mol}\right.$	9, 10
hard sphere radius	r			
collision diameter	$d_{\text {AB }}$	$d_{\mathrm{AB}}=r_{\mathrm{A}}+r_{\mathrm{B}}$	m	
collision cross section	σ	$\sigma=\pi d_{\mathrm{AB}}{ }^{2}$	m^{2}	11
mean relative speed between A and B	$\bar{c}_{\text {AB }}$	$\bar{c}_{\mathrm{AB}}=(8 k T / \pi \mu)^{1 / 2}$	$\mathrm{m} \mathrm{s}^{-1}$	12
collision frequency				
of A with A	$z_{\text {A }}(\mathrm{A})$	$z_{\mathrm{A}}(\mathrm{A})=\sqrt{2} C_{\mathrm{A}} \sigma c$		11
of A with B	$z_{\mathrm{A}}(\mathrm{B})$	$z_{\mathrm{A}}(\mathrm{B})=C_{\mathrm{B}} \sigma \bar{c}_{\mathrm{AB}}$	s^{-1}	11

(7) The rates of unimolecular reactions show a dependence upon the concentration c_{M} of a collision partner M. One writes $k_{\text {uni }}\left(T, c_{\mathrm{M}}\right)$ to emphasize the temperature and "pressure" dependence. At high $c_{\mathrm{M}}(\rightarrow \infty)$ the dependence vanishes. At low $c_{\mathrm{M}}(\rightarrow 0)$ it gives a partial order 1 of reaction with respect to c_{M}. In this case one defines the second order rate constant k_{0}.
(8) τ is defined as the time interval in which a concentration perturbation Δc falls to $1 / \mathrm{e}$ of its initial value $\Delta c(0)$. If some initial concentration of a substance decays to zero as $t \rightarrow \infty$, as in radioactive decay, then the relaxation time is the average lifetime of that substance (radioisotope). This lifetime or decay time must be distinguished from the half life.
(9) One may use as defining equation

$$
E_{\mathrm{A}}=-R \mathrm{~d}(\ln k) / \mathrm{d}(1 / T)
$$

The term Arrhenius activation energy is to be used only for the empirical quantity defined in the table. Other empirical equations with different "activation energies", such as

$$
k(T)=A^{\prime} T^{n} \exp \left(-E_{\mathrm{a}}{ }^{\prime} / R T\right)
$$

are also being used. In such expressions A^{\prime}, n, and $E_{\mathrm{a}}{ }^{\prime}$ are taken to be temperature independent parameters.
The term activation energy is also used for an energy threshold appearing in the electronic potential (the height of the electronic energy barrier). For this "activation energy" the symbol E_{0} and the term threshold energy is preferred, but E_{a} is also commonly used. Furthermore, E_{0} may or may not include a correction for zero point energies of reactants and the transition state.
It is thus recommended to specify in any given context exactly which activation energy is meant and to reserve (Arrhenius) activation energy only and exactly for the quantity defined in the table.
E_{A} depends on temperature and may be written $E_{\mathrm{A}}(T)$.
(10) A is dependent on temperature and may be written $A(T)$.
(11) The collision cross section σ is a constant in the hard sphere collision model, but generally it is energy dependent. One may furthermore define a temperature dependent average collision cross section (see note 16). C denotes the number concentration.
(12) μ is the reduced mass, $\mu=m_{\mathrm{A}} m_{\mathrm{B}} /\left(m_{\mathrm{A}}+m_{\mathrm{B}}\right)$.

(13) Z_{AA} and Z_{AB} are the total number of AA or AB collisions per time and volume in a system containing only A molecules, or containing molecules of two types, A and B. Three-body collisions can be treated in a similar way.
(14) The impact parameter b characterizes an individual collision between two particles; it is defined as the distance of closest approach that would result if the particle trajectories were undeflected by the collision.
(15) $\theta=0$ implies no deflection.
(16) In all these matrix quantities the first index refers to the final and the second to the initial channel. i and j denote reactant and product channels, respectively, and Ω denotes solid angle; $\mathrm{d} \sigma_{j i} / \mathrm{d} \Omega$ is equal to (scattered particle current per solid angle) divided by (incident particle current per area). Elastic scattering implies $i=j$. Both $I_{j i}$ and $\sigma_{j i}$ depend on the total energy of relative motion, and may be written $I_{j i}(E)$ and $\sigma_{j i}(E)$. General collision theory leads to an expression of a rate coefficient in terms of the energy dependent total reaction cross section

$$
k_{j i}(T)=\left(\frac{8 k_{\mathrm{B}} T}{\pi \mu}\right)^{1 / 2} \int_{0}^{\infty}\left(\frac{E}{k_{\mathrm{B}} T}\right) \sigma_{j i}(E) \exp \left(-E / k_{\mathrm{B}} T\right)\left(\frac{\mathrm{d} E}{k_{\mathrm{B}} T}\right)
$$

where E is the translational collision energy and μ the reduced mass (see note 12). The integral can be interpreted as the thermally averaged collision cross section $\left\langle\sigma_{j i}\right\rangle$, which is to be used in the calculation of the collision frequency under thermal conditions (see note 11).
(17) The scattering matrix S is used in quantum scattering theory [101]. S is a unitary matrix $\boldsymbol{S} \boldsymbol{S}^{\dagger}=1 . P_{j i}=\left|S_{j i}\right|^{2}$ is the probability that collision partners incident in channel i will emerge in channel j.
(18) The quantities $\Delta^{\ddagger} H^{\ominus}, \Delta^{\ddagger} U^{\ominus}, \Delta^{\ddagger} S^{\ominus}$ and $\Delta^{\ddagger} G^{\ominus}$ are used in the transition state theory of chemical reactions. They are appropriately used only in connection with elementary reactions. The relation between the rate constant k and these quantities is more generally

$$
k=\kappa\left(k_{B} T / h\right) \exp \left(-\Delta^{\ddagger} G^{\ominus} / R T\right)
$$

Name	Symbol	Definition	SI unit	Notes
standard Gibbs energy of activation	$\Delta^{\ddagger} G^{\ominus}, \Delta G^{\ddagger}$	$\Delta^{\ddagger} G^{\ominus}=\Delta^{\ddagger} H^{\ominus}-T \Delta^{\ddagger} S^{\ominus}$	$\mathrm{J} \mathrm{mol}^{-1}$	18
molecular partition function for transition state	$q^{\ddagger}, q^{\ddagger}(T)$	$k_{\infty}=\kappa \frac{k_{\mathrm{B}} T}{h} \frac{q^{\ddagger}}{q_{\mathrm{A}}} \exp \left(-E_{0} / k_{\mathrm{B}} T\right)$	1	18
transmission coefficient	κ, γ	$\kappa=\frac{k_{\infty} h}{k_{\mathrm{B}} T} \frac{q_{\mathrm{A}}}{q^{\ddagger}} \exp \left(E_{0} / k_{\mathrm{B}} T\right)$		18
molecular partition function per volume	\tilde{q}	$\tilde{q}=q / V$	m^{-3}	18
specific rate constant of unimolecular reaction at E, J	$k_{\text {uni }}(E, J)$	$k_{\text {uni }}(E, J)=-\frac{\mathrm{d}\left(\ln c_{\mathrm{A}}(E, J)\right)}{\mathrm{d} t}$		19
specific rate constant of bimolecular reaction at collision energy E_{t}	$k_{\text {bi }}\left(E_{\mathrm{t}}\right)$	$k_{\mathrm{bi}}\left(E_{\mathrm{t}}\right)=\sigma\left(E_{\mathrm{t}}\right) \sqrt{2 E_{\mathrm{t}} / \mu}$	$\mathrm{m}^{3} \mathrm{~s}^{-1}$	11
density of states	$\rho(E, J, \cdots)$	$\rho(E, J, \cdots)=\mathrm{d} N(E, J, \cdots) / \mathrm{d} E$	J^{-1}	19
number (sum) of states	$N(E), W(E)$	$N(E)=\int_{0}^{E} \rho\left(E^{\prime}\right) \mathrm{d} E^{\prime}$	1	19
density of states of transition state	$\rho^{\ddagger}(E)$	$\rho^{\ddagger}(E)=\stackrel{0}{\mathrm{~d}} N^{\ddagger}(E) / \mathrm{d} E$	J^{-1}	19
number of states of transition state	$N^{\ddagger}(E), W^{\ddagger}(E)$	$N^{\ddagger}(E)=\int_{E_{0}}^{E} \rho^{\ddagger}\left(E^{\prime}\right) \mathrm{d} E^{\prime}$	1	19
number of open adiabatic reaction channels	$W(E)$	$W(E)=\sum_{a} \mathrm{H}\left(E-V_{a}{ }^{\text {max }}\right)$	1	19
Michaelis constant	K_{M}	$=\frac{V[\mathrm{~S}]}{K_{\mathrm{M}}+[\mathrm{S}]}$	$\mathrm{mol} \mathrm{m}{ }^{-3}$	20
rate (coefficient) matrix	$\boldsymbol{K}, K_{f i}$	$-\frac{\mathrm{d} \boldsymbol{c}}{\mathrm{~d} t}=\boldsymbol{K} \boldsymbol{c}$	s^{-1}	21
quantum yield, photochemical yield	Φ, ϕ		1	22
fluorescence rate consta		$\frac{\mathrm{d}[h \nu]_{\mathrm{f}}}{\mathrm{~d} t}=k_{\mathrm{f}} c^{*}$	s^{-1}	23, 24
natural lifetime		$\tau_{0}=1 / k_{\mathrm{f}}$	S	23
natural linewidth	$\Gamma, \Gamma_{\mathrm{f}}$	$\Gamma=\hbar k_{\mathrm{f}}$	J	23
predissociation linewidth	$\Gamma_{\mathrm{p}}, \Gamma_{\text {diss }}$	$\Gamma_{\mathrm{p}}=\hbar k_{\mathrm{p}}$	J	23

(18) (continued) where k has the dimensions of a first-order rate constant. A rate constant for a reaction of order n is obtained by multiplication with $\left(c^{\ominus}\right)^{1-n}$. For a bimolecular reaction of an ideal gas multiply by $V^{\ominus}=\left(c^{\ominus}\right)^{-1}=\left(k T / p^{\ominus}\right) . \quad \kappa$ is a transmission coefficient, and $\Delta^{\ddagger} G^{\ominus}=$ $\Delta^{\ddagger} H^{\ominus}-T \Delta^{\ddagger} S^{\ominus}$. The standard symbol ${ }^{\ominus}$ is sometimes omitted, and these quantities are frequently written $\Delta^{\ddagger} H, \Delta^{\ddagger} U, \Delta^{\ddagger} S$ and $\Delta^{\ddagger} G$. However, the omission of the specification of a standard state leads to ambiguity in the values of these quantities. The choice of p^{\ominus} and c^{\ominus} in general affects the values of $\Delta^{\ddagger} H^{\ominus}, \Delta^{\ddagger} S^{\ominus}$ and $\Delta^{\ddagger} G^{\ominus}$.
The statistical mechanical formulation of transition state theory results in the equation for k_{∞} as given in the table for a unimolecular reaction in the high pressure limit, and for a bimolecular reaction one has (often with $\kappa=1$ assumed)
(Notes continued)
(18) (continued)

$$
k_{\mathrm{bi}}=\kappa \frac{k_{\mathrm{B}} T}{h} \frac{\widetilde{q}^{\ddagger}}{\widetilde{q}_{\mathrm{A}} \widetilde{q}_{\mathrm{B}}} \exp \left(-E_{0} / k_{\mathrm{B}} T\right)
$$

where q^{\ddagger} is the partition function of the transition state and $\widetilde{q}^{\ddagger}, \widetilde{q}_{\mathrm{A}}, \widetilde{q}_{\mathrm{B}}$ are partition functions per volume for the transition state and the reaction partners A and B. E_{0} is the threshold energy for reaction, below which no reaction is assumed to occur. In transition state theory, it is the difference of the zero-point level of the transition state and the zero-point level of reactants.
(19) In the theory of unimolecular reactions, it is important to consider rate constants for an ensemble of molecules at well defined energy E (and possibly other good quantum numbers such as angular momentum J etc.) with concentration $c_{\mathrm{A}}(E, J, \cdots)$. Expressions equivalent to transition state theory arise for these in the framework of quasi-equilibrium theory, Rice-Ramsperger-KasselMarcus (RRKM) theory of the statistical adiabatic channel model (SACM). The unimolecular rate constant is then given by the RRKM expression

$$
k(E)=\frac{N^{\ddagger}(E)}{h \rho(E)}
$$

$\rho(E)$ is the density of states of the molecule, $N(E)$ is the total number of states of the molecule with energy less than E,

$$
N(E)=\sum_{i} \mathrm{H}\left(E-E_{i}\right)=\int_{0}^{E} \rho\left(E^{\prime}\right) \mathrm{d} E^{\prime}
$$

and $N^{\ddagger}(E)$ is the corresponding number of states of the transition state. In the framework of the statistical adiabatic channel model one has

$$
k(E, J)=\kappa \frac{W(E, J)}{h \rho(E, J)}
$$

$V_{a}^{\max }$ is the maximum of the potential of adiabatic channel $a, \mathrm{H}(x)$ is the Heaviside function (see Section 4.2, p. 107) and J is the angular momentum quantum number [102]. There may be further constants of the motion beyond J appearing here.
(20) The Michaelis constant arises in the treatment of a mechanism of enzyme catalysis

$$
\mathrm{E}+\mathrm{S} \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}}(\mathrm{ES}) \underset{k_{-2}}{\stackrel{k_{2}}{\rightleftarrows}} \mathrm{E}+\mathrm{P}
$$

where E is the enzyme, S the substrate, ES the enzyme-substrate complex and P the product. V is called limiting rate [100].
(21) In generalized first-order kinetics, the rate equation can be written as a matrix equation, with the concentration vector $\boldsymbol{c}=\left(c_{1}, c_{2}, \cdots, c_{n}\right)^{\top}$ and the first-order rate coefficients $K_{f i}$ as matrix elements.
(22) The quantum yield ϕ is defined in general by the number of defined events divided by number of photons absorbed [60]. For a photochemical reaction it can be defined as

$$
\phi=\left|\frac{\mathrm{d} \xi / \mathrm{d} t}{\mathrm{~d} n_{\gamma} / \mathrm{d} t}\right|
$$

which is the rate of conversion divided by the rate of photon absorption.
(23) For exponential decay by spontaneous emission (fluorescence) one has for the decay of the excited state concentration c^{*}
$\frac{\mathrm{d}[h \nu]}{\mathrm{d} t}=-\frac{\mathrm{d} c^{*}}{\mathrm{~d} t}=k_{\mathrm{f}} c^{*}$
The full width at half maximum Γ of a lorentzian absorption line is related to the rate constant of fluorescence. For a predissociation Γ_{p} is related to the predissociation rate constant k_{p}. However, linewidths may also have other contributions in practice.

2.12.1 Other symbols, terms, and conventions used in chemical kinetics

Additional descriptions can be found in [100].

(i) Elementary reactions

Reactions that occur at the molecular level in one step are called elementary reactions. It is conventional to define them as unidirectional, written with a simple arrow always from left to right. The number of relevant reactant particles on the left hand side is called the molecularity of the elementary reaction.

$$
\begin{array}{lrl}
\text { Examples } & \begin{aligned}
\mathrm{A} \rightarrow \mathrm{~B}+\mathrm{C} & \text { unimolecular reaction (also monomolecular) } \\
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D} & \text { bimolecular reaction } \\
\mathrm{A}+\mathrm{B}+\mathrm{C} \rightarrow \mathrm{D}+\mathrm{E} & \text { trimolecular reaction (also termolecular) }
\end{aligned} .
\end{array}
$$

(ii) Composite mechanisms

A reaction that involves more than one elementary reaction is said to occur by a composite mechanism. The terms complex mechanism, indirect mechanism, and stepwise mechanism are also commonly used. Special types of mechanisms include chain-reaction mechanisms, catalytic reaction mechanisms, etc.

Examples A simple mechanism is composed of forward and reverse reactions

$$
\mathrm{A} \rightarrow \mathrm{~B}+\mathrm{C}
$$

$\mathrm{B}+\mathrm{C} \rightarrow \mathrm{A}$
It is in this particular case conventional to write these in one line

$$
\mathrm{A} \rightleftarrows \mathrm{~B}+\mathrm{C}
$$

However, it is useful in kinetics to distinguish this from a net reaction, which is written either with two one-sided arrows or an "equal" sign

$$
\begin{aligned}
& \mathrm{A} \rightleftharpoons \mathrm{~B}+\mathrm{C} \\
& \mathrm{~A}=\mathrm{B}+\mathrm{C}
\end{aligned}
$$

When one combines a composite mechanism to obtain a net reaction, one should not use the simple arrow in the resulting equation.

```
Example \(\quad \mathrm{A} \rightarrow \mathrm{B}+\mathrm{C}\) unimolecular elementary reaction
            \(\mathrm{B}+\mathrm{C} \rightarrow \mathrm{D}+\mathrm{E} \quad\) bimolecular elementary reaction
    \(\mathrm{A}=\mathrm{D}+\mathrm{E}\) net reaction (no elementary reaction, no molecularity)
```

It is furthermore useful to distinguish the stoichiometric equation defining the reaction rate and rate constant from the equation defining the elementary reaction and rate law.

Example Recombination of methyl radicals in the high pressure limit
The elementary reaction is $\mathrm{CH}_{3}+\mathrm{CH}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$
This has a second order rate law. If one uses the stoichiometric equation $2 \mathrm{CH}_{3}=\mathrm{C}_{2} \mathrm{H}_{6}$
the definition of the reaction rate gives

$$
v_{C}=-\frac{1}{2} \frac{\mathrm{~d} C_{\mathrm{CH}_{3}}}{\mathrm{~d} t}=k C_{\mathrm{CH}_{3}}{ }^{2}
$$

(Notes continued)
(24) The einstein is sometimes either used as the unit of amount of substance of photons, where one einstein corresponds to 1 mol of photons, or as the unit of energy where one einstein corresponds to the energy $L h \nu$ of 1 mol of monochromatic photons with frequency ν.
(continued) If one uses the stoichiometric equation $\mathrm{CH}_{3}=(1 / 2) \mathrm{C}_{2} \mathrm{H}_{6}$
the definition of the reaction rate gives

$$
v_{C}=-\frac{\mathrm{d} C_{\mathrm{CH}_{3}}}{\mathrm{~d} t}=k^{\prime} C_{\mathrm{CH}_{3}}{ }^{2}
$$

Hence $k^{\prime}=2 k$.
Similar to reaction enthalpies, rate coefficients are only defined with a given stoichiometric equation. It is recommended always to state explicitly the stoichiometric equation and the differential equation for the reaction rate to avoid ambiguities. If no other statement is made, the stoichiometric coefficients should be as in the reaction equation (for the elementary reaction). However, it is not always possible to use a reaction equation as stoichiometric equation.

Example The trimolecular reaction for hydrogen atoms
The elementary reaction is $\mathrm{H}+\mathrm{H}+\mathrm{H} \rightarrow \mathrm{H}_{2}+\mathrm{H}$
This has a third order rate law. The stoichiometric equation is
$2 \mathrm{H}=\mathrm{H}_{2}$
and the definition of the reaction rate gives

$$
v_{c}=-\frac{1}{2} \frac{\mathrm{~d}[\mathrm{H}]}{\mathrm{d} t}=k[\mathrm{H}]^{3}
$$

The bimolecular reaction $\mathrm{H}+\mathrm{H} \rightarrow \mathrm{H}_{2}$ with the same stoichiometric equation is a different elementary reaction (a very unlikely one), not the same as the trimolecular reaction. Other examples include catalyzed reactions such as $X+A \rightarrow X+B$ with the stoichiometric equation $\mathrm{A}=\mathrm{B}$ and the rate $v_{c}=-\mathrm{d}[\mathrm{A}] / \mathrm{d} t=k[\mathrm{~A}][\mathrm{X}](\neq \mathrm{d}[\mathrm{X}] / \mathrm{d} t=0)$. Again, the unimolecular reaction $\mathrm{A} \rightarrow \mathrm{B}$ exists, but would be a different elementary reaction with the same stoichiometry.

2.13 ELECTROCHEMISTRY

Electrochemical concepts, terminology and symbols are more extensively described in [1.i] and [103-107]. For the field of electrochemical engineering see [108], for semiconductor electrochemistry and photo-electrochemical energy conversion see [109], for corrosion nomenclature see [110], for impedances in electrochemical systems see [111], for electrokinetic phenomena see [112], for electrochemical biosensors see [113], and for chemically modified electrodes (CME) see [114].

Name	Symbol	Definition	SI unit	Notes
elementary charge	e	proton charge	C	
Faraday constant	F	$F=e N_{\text {A }}$	C mol^{-1}	
charge number of an ion	z	$z_{\mathrm{B}}=Q_{\mathrm{B}} / e$		1
ionic strength, molality basis	I_{m}, I	$I_{m}=(1 / 2) \sum_{i} m_{i} z_{i}^{2}$	mol kg^{-1}	
concentration basis	I_{c}, I	$I_{c}=(1 / 2) \sum_{i} c_{i} z_{i}^{2}$	$\mathrm{mol} \mathrm{m}{ }^{-3}$	2
mean ionic molality	$m_{ \pm}$	$m_{ \pm}{ }^{\left(\nu_{+}+\nu_{-}\right)} \stackrel{i}{=} m_{+}{ }^{\nu_{+}+m_{-}{ }^{\nu}-1}$	mol kg^{-1}	3
mean ionic activity coefficient	$\gamma_{ \pm}$		1	3
mean ionic activity	$a_{ \pm}$	$a_{ \pm \pm}=m_{ \pm} \gamma_{ \pm} / m^{\theta}$	1	3, 4, 5
activity of an electrolyte	$a\left(\mathrm{~A}_{\nu_{+}} \mathrm{B}_{\nu_{-}}\right)$	$a\left(\mathrm{~A}_{\nu_{+}} \mathrm{B}_{\nu_{-}}\right)=a_{ \pm \pm}{ }^{\left(\nu_{+}+\nu_{-}\right)}$	1	3
pH	pH	$\mathrm{pH}=-\lg \left(a_{\mathrm{H}^{+}}\right)$	1	5, 6
outer electric potential	ψ		V	7
surface electric potential	χ		V	8
inner electric potential	ϕ	$\phi=\chi+\psi$	V	
Volta potential difference	$\Delta \psi$	$\Delta_{a}{ }^{\beta} \psi=\psi^{\beta}-\psi^{\alpha}$	V	9

(1) The definition applies to entities B.
(2) To avoid confusion with the cathodic current, symbol I_{c} (note roman subscript), the symbol I or sometimes μ (when the current is denoted by I) is used for ionic strength based on concentration.
(3) ν_{+}and ν_{-}are the numbers of cations and anions per formula unit of an electrolyte $\mathrm{A}_{\nu+} \mathrm{B}_{\nu-}$.

Example For $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}, \nu_{+}=2$ and $\nu_{-}=3$.
m_{+}and m_{-}, and γ_{+}and γ_{-}, are the molalities and activity coefficients of cations and anions. If the molality of $\mathrm{A}_{\nu+} \mathrm{B}_{\nu-}$ is m, then $m_{+}=\nu_{+} m$ and $m_{-}=\nu_{-} m$. A similar definition is used on a concentration scale for the mean ionic concentration $c_{ \pm}$.
(4) $m^{\ominus}=1 \mathrm{~mol} \mathrm{~kg}^{-1}$.
(5) For an individual ion, neither the activity a_{+}, a_{-}nor the activity coefficient γ_{+}, γ_{-}is experimentally measurable.
(6) The definition of pH is discussed in Section 2.13 .1 (viii), p. 75. The symbol pH is an exception to the general rules for the symbols of physical quantities (Section 1.3.1, p. 5) in that it is a two-letter symbol and it is always printed in Roman (upright) type.
(7) ψ^{β} is the electrostatic potential of phase β due to the electric charge Q of the phase. It may be calculated from classical electrostatics. For example, for a conducting sphere with excess charge Q and radius r, placed in vacuo, $\psi=Q / 4 \pi \varepsilon_{0} r$.
(8) The surface potential is defined as the work (divided by the charge) necessary to transfer an ideal (i.e. massless) positive charge through a dipole layer at the interphase between phase α and β. The absolute value of χ cannot be determined, only differences are measurable.
(9) $\Delta \psi$ is the outer potential difference due to the charge on phases α and β. It is a measurable quantity.

(10) $\Delta \phi$ is the inner potential difference between points within the bulk phases α and β; it is measurable only if the phases are of identical composition.
(11) The electrochemical potential of ion B in a phase is the partial molar Gibbs energy of the ion. The special name "electrochemical potential", and the tilde on the symbol $\widetilde{\mu}_{\mathrm{B}}$, are used as a reminder that for an ion the partial molar Gibbs energy depends on the inner potential ϕ as well as on the chemical composition. The difference of electrochemical potential of ion B between two phases α and β of different chemical composition and different inner potential is given by

$$
\widetilde{\mu}_{\mathrm{B}}^{\alpha}-\widetilde{\mu}_{\mathrm{B}}^{\beta}=\mu_{\mathrm{B}}{ }^{\alpha \theta}-\mu_{\mathrm{B}}^{\beta \theta}+R T \ln \left(a_{\mathrm{B}}^{\alpha} / a_{\mathrm{B}}^{\beta}\right)+z_{\mathrm{B}} F\left(\phi^{\alpha}-\phi^{\beta}\right)
$$

It is not generally possible to separate the term depending on the composition from the term depending on the inner potential, because it is not possible to measure either the relative activity a_{B} of an ion, or the inner potential difference between two phases of different chemical composition. The electrochemical potential, however, is always well defined, and in a multiphase system with phases at different inner potentials, equilibrium with regard to the transfer of ion B between phases is achieved when its electrochemical potential is the same in all phases.
(12) Q_{s} is the charge on one side of the interface, A is the surface area. For the case of metal and semiconductor electrodes, by convention the charge refers to the electrode side.
(13) The absolute value of the electrode potential cannot be measured, so E is always reported relative to the potential of some reference electrode, e.g. that of a standard hydrogen electrode (SHE) (see Section 2.13 .1 (vi), p. 74). The concept of an absolute electrode potential is discussed in [106].
(14) The two electrodes of an electrochemical cell can be distinguished by the subscripts L (left) and R (right), or 1 and 2 . This facilitates the representation of the cell in a so-called cell diagram (see Section 2.13 .1 (iii), p. 73). E_{L} and E_{R} are the electrode potentials of these two electrodes. In electrochemical engineering, the cell voltage is exclusively denoted by U. The limiting value of $E_{\text {cell }}$ for zero current flowing through the cell, all local charge transfer and chemical equilibria being established, was formerly called emf (electromotive force). The name electromotive force and the symbol emf are no longer recommended, since a potential difference is not a force.
(15) z (or n) is the number of electrons in the balanced electrode reaction as written. It is a positive integer, equal to $\left|\nu_{\mathrm{e}}\right|$, when ν_{e} is the stoichiometric number of the electron in the electrode reaction. n is commonly used where there is no risk of confusion with amount of substance.
(16) The symbols ${ }^{\ominus}$ and ${ }^{\circ}$ are both used to indicate standard state; they are equally acceptable.
(17) The standard potential is the value of the equilibrium potential of an electrode under standard conditions. $\Delta_{\mathrm{r}} G^{\ominus}$ is the standard Gibbs energy of this electrode reaction, written as a reduction, with respect to that of the standard hydrogen electrode (see also Section 2.13.1 (vi), p. 74). The electrode potential attains its equilibrium value if no current flows through the cell, and all local charge

Name	Symbol	Definition	SI unit	Notes
equilibrium electrode potential (of an electrochemical reaction)	$E_{\text {eq }}$	$E_{\mathrm{eq}}=E^{\ominus}-(R T / z F) \sum_{i} \nu_{i} \ln a_{i}$	V	$15-18$
formal potential	$E^{\ominus \prime}$	$E_{\text {eq }}=E^{\ominus \prime}-(R T / z F) \sum_{i} \nu_{i} \ln \left(c_{i} / c^{\ominus}\right)$	V	15, 19
liquid junction potential	E_{j}			20
electric current	I	$I=\mathrm{d} Q / \mathrm{d} t$	A	21
electric current density	j, j	$j=I / A$	A m ${ }^{-2}$	22
faradaic current	$I_{\text {F }}$	$I_{\mathrm{F}}=I_{\mathrm{c}}+I_{\mathrm{a}}$	A	23
reduction rate constant	$k_{\text {c }}$	$I_{\mathrm{c}}=-n F A k_{\mathrm{c}} \prod_{\mathrm{B}}\left(c_{\mathrm{B}}{ }^{\prime}\right)^{n_{\mathrm{B}}}$	(varies)	1, 15, 24
oxidation rate constant	$k_{\text {a }}$	$I_{\mathrm{a}}=n F A k_{\mathrm{a}} \prod_{\mathrm{B}}\left(c_{\mathrm{B}}{ }^{\prime}\right)^{n_{\mathrm{B}}}$	(varies)	1, 15, 24
transfer coefficient	$\alpha, \alpha_{\text {c }}$	$\alpha_{\mathrm{c}}=-(R T / n F) \mathrm{d}\left(\ln k_{\mathrm{c}}\right) / \mathrm{d} E$	1	15, 25
overpotential	η, E_{η}	$\eta=E-E_{\text {eq }}$	V	
Tafel slope	b	$b=\left(\partial E / \partial \ln \left\|I_{\mathrm{F}}\right\|\right)_{c_{i}, T, p}$	V	26
mass transfer coefficient	$k_{\text {d }}$	$k_{\mathrm{d}, \mathrm{B}}=\left\|\nu_{B}\right\| I_{\text {lim, }} / n F c A$	$\mathrm{m} \mathrm{s}^{-1}$	1, 15, 27

(17) (continued) transfer equilibria across phase boundaries that are represented in the cell diagram (except at possible electrolyte-electrolyte junctions) and local chemical equilibria within the phases are established.
(18) This is the Nernst equation. $\sum \nu_{i} \ln a_{i}$ refers to the electrode reaction, where a_{i} are the activities of the species taking part in it; ν_{i} are the stoichiometric numbers of these species in the equation for the electrode reaction, written as a reduction, ν_{i} is positive for products and negative for reactants. The equilibrium potential is also called Nernst potential, or reversible potential.
(19) It is $E^{\ominus \prime}$ which is calculated in electrochemical experiments when the concentrations of the various species are known, but not their activities. Its value depends on the composition of the electrolyte solution. The argument of \ln is dimensionless, the concentration c_{i} is normalized through division by the standard concentration c^{\ominus}, usually $c^{\ominus}=1 \mathrm{~mol} \mathrm{dm}^{-3}$ for soluble species.
(20) E_{j} is the Galvani potential difference between two electrolyte solutions in contact.
(21) Q is the charge transferred through the external circuit of the cell.
(22) Formally, the current density is a vector, $\mathrm{d} I=\boldsymbol{j} \cdot \boldsymbol{e}_{\mathrm{n}} \mathrm{d} A$ (see Section 2.3 , note 2, p. 16).
(23) I_{F} is the current through the electrode|solution interface, resulting from the charge transfer due to an electrode reaction proceeding as reactants $+n \mathrm{e}^{-} \rightarrow$ products. I_{c} is the cathodic partial current due to the reduction reaction, I_{a} is the anodic partial current due to the oxidation reaction. By definition I_{c} is negative and I_{a} positive. At the equilibrium potential, $I_{\mathrm{a}}=-I_{\mathrm{c}}=I_{0}$ (the exchange current) and $j_{\mathrm{a}}=-j_{\mathrm{c}}=j_{0}$ (the exchange current density). I or j may achieve limiting values, indicated by the subscript lim, in addition to the subscripts F , c , or a.
(24) For a first-order reaction the SI unit is $\mathrm{m} \mathrm{s}^{-1}$. Here n (or z) is the number of electrons transferred in the electrochemical reaction, $c_{\mathrm{B}}{ }^{\prime}$ is the concentration at the interphase, n_{B} is the order of the reaction with respect to entity B. The formerly used symbols $k_{\mathrm{red}}, k_{\mathrm{f}}$ and \vec{k} (for k_{c}) and $k_{\mathrm{ox}}, k_{\mathrm{b}}$ and \overleftarrow{k} (for k_{a}) are not recommended.
(25) α or α_{c} is also named cathodic transfer coefficient. Analogously the anodic transfer coefficient is defined as $\alpha_{\mathrm{a}}=(R T / n F) \mathrm{d}\left(\ln k_{\mathrm{a}}\right) / \mathrm{d} E$. At the same potential $\alpha_{\mathrm{a}}=1-\alpha_{\mathrm{c}}$. The symmetry factor, β, is the cathodic transfer coefficient, α_{i} of an elementary reaction step i, in which only one electron is transferred.
(26) The Tafel slope b is an experimental quantity from which kinetic information can be derived.
(27) The mass transfer coefficient is the flux divided by the concentration. For steady-state mass transfer, $k_{\mathrm{d}, \mathrm{B}}=D_{\mathrm{B}} / \delta_{\mathrm{B}}$ where δ_{B} is the diffusion layer thickness (which is model dependent) and D_{B} is the diffusion coefficient of entity B. For more information see [17].

Name	Symbol	Definition	SI unit	Notes
electrokinetic potential (ζ-potential)	ζ		V	
conductivity	$\kappa,(\sigma)$	$\boldsymbol{j}=\kappa \boldsymbol{E}$	S m ${ }^{-1}$	22, 28
electric mobility	$u,(m)$	$u_{\mathrm{B}}=\left\|v_{\mathrm{B}}\right\| /\|\boldsymbol{E}\|$	$\mathrm{m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$	1, 29
ionic conductivity, molar conductivity of an ion	λ	$\lambda_{\mathrm{B}}=\left\|z_{\mathrm{B}}\right\| F u_{\mathrm{B}}$	$\mathrm{Sm}^{2} \mathrm{~mol}^{-1}$	1, 30, 31
molar conductivity	Λ	$\Lambda\left(\mathrm{A}_{\nu^{+}} \mathrm{B}_{\nu^{-}}\right)=\nu_{+} \lambda_{+}+\nu_{-} \lambda_{-}$	$\mathrm{Sm} \mathrm{m}^{2} \mathrm{~mol}^{-1}$	1, 30, 31
transport number	t	$t_{\mathrm{B}}=\lambda_{\mathrm{B}} c_{\mathrm{B}} / \sum_{i} \lambda_{i} c_{i}=j_{\mathrm{B}} / \sum_{i} j_{i}$	1	1

(28) Conductivity was formerly called specific conductance. \boldsymbol{E} is the electric field strength vector.
(29) v_{B} is the migration velocity of entities B and $|\boldsymbol{E}|$ is the electric field strength within the phase concerned.
(30) The unit $\mathrm{S} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$ is often used for molar conductivity. The conductivity is equal to $\kappa=\sum \lambda_{i} c_{i}$.
(31) It is important to specify the entity to which molar conductivity refers. It is standard practice to choose the entity to be $1 / z_{\mathrm{B}}$ of an ion of charge number z_{B}, in order to normalize ion charge, so that for example molar conductivities for potassium, barium and lanthanum ions would be quoted as $\lambda\left(\mathrm{K}^{+}\right), \lambda\left((1 / 2) \mathrm{Ba}^{2+}\right)$, or $\lambda\left((1 / 3) \mathrm{La}^{3+}\right)$ the so-called molecular conductivity of equivalent entities (formerly called equivalent conductivity) [115].

2.13.1 Sign and notation conventions in electrochemistry ${ }^{1}$

(i) Electrochemical cells

Electrochemical cells consist of at least two (usually metallic) electron conductors in contact with ionic conductors (electrolytes). The current flow through electrochemical cells may be zero or non-zero. Electrochemical cells with current flow can operate either as galvanic cells, in which chemical reactions occur spontaneously and chemical energy is converted into electrical energy, or as electrolytic cells, in which electrical energy is converted into chemical energy. In both cases part of the energy becomes converted into (positive or negative) heat.

(ii) Electrode

There are at present two usages for the term electrode, namely either (i) the electron conductor (usually a metal) connected to the external circuits or (ii) the half cell consisting of one electron conductor and at least one ionic conductor. The latter version has usually been favored in electrochemistry.
(iii) Representation of electrochemical cells

Electrochemical cells are represented by diagrams such as those in the following examples:

$$
\begin{array}{ll}
\text { Examples } \quad & \mathrm{Pt}(\mathrm{~s})\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{HCl}(\mathrm{aq})|\mathrm{AgCl}(\mathrm{~s})| \mathrm{Ag}(\mathrm{~s}) \\
& \mathrm{Cu}(\mathrm{~s})\left|\mathrm{CuSO}_{4}(\mathrm{aq})\right| \mathrm{ZnSO}_{4}(\mathrm{aq}) \mid \mathrm{Zn}(\mathrm{~s}) \\
& \mathrm{Cu}(\mathrm{~s})\left|\mathrm{CuSO}_{4}(\mathrm{aq}):\left|: \mathrm{KCl}(\mathrm{aq}, \mathrm{sat}): \mathrm{ZnSO}_{4}(\mathrm{aq})\right| \mathrm{Zn}(\mathrm{~s})\right.
\end{array}
$$

A single vertical bar (\mid) should be used to represent a phase boundary, a dashed vertical bar (i) to represent a junction between miscible liquids, and double dashed vertical bars (${ }_{i} i$) to represent a liquid junction, in which the liquid junction potential is assumed to be eliminated.

[^5]
(iv) Potential difference of an electrochemical cell

The potential difference of an electrochemical cell is measured between a metallic conductor attached to the right-hand electrode of the cell diagram and an identical metallic conductor attached to the left-hand electrode. Electric potential differences can be measured only between two pieces of material of the same composition. In practice, these are almost always two pieces of copper, attached to the electrodes of the cell.

At a boundary copper | electrode material there is a contact potential difference; its value is incorporated in the constant to which the electrode potential is referred.

Due to the different rates of diffusion of anions and cations from one solution to the other, liquid junction potentials, E_{j}, appear whenever two solutions of different composition are immiscible or are separated by a diaphragm or some other means to avoid mixing. If equilibrium is not established at these junctions, the cells may include unknown junction potentials. Salt bridges (see, for example, the third cell in the previous Section 2.13 .1 (iii)) are commonly employed to minimize or to stabilize the contributions of (liquid) junction potentials at the interface of two miscible electrolyte solutions to the measured potential difference. At the interface of two immiscible electrolyte solutions, a thermodynamic distribution potential can be established due to equilibrium charge partition.

(v) Standard potential of an electrochemical cell reaction

If no current flows through the cell, and all local charge transfer and local chemical equilibria of each electrode reaction are established, the potential difference of the cell is related to the Gibbs energy of the overall cell reaction by the equation

$$
\Delta_{\mathrm{r}} G=-z F E_{\mathrm{cell}, \mathrm{eq}}
$$

assuming that junction potentials are negligible. If the reaction of the electrochemical cell as written takes place spontaneously, $\Delta_{\mathrm{r}} G$ is negative and $E_{\text {cell }}$ positive. If the cell is written with the electrodes in the inverse order $\Delta_{\mathrm{r}} G$ is positive and $E_{\text {cell }}$ is negative. The equilibrium potential of the cell, i.e. when no current flows, is given by

$$
E_{\text {cell,eq }}=E^{\ominus} \text { cell,eq }-\frac{R T}{z F} \sum_{i} \nu_{i} \ln a_{i}
$$

a_{i} are the activities of the species taking part in the cell reaction and ν_{i} are the stoichiometric numbers of these species in the equation written for the cell reaction (see also notes 15 and 16 , p. 71).

(vi) Standard electrode potential (of an electrochemical reaction)

The standard potential of an electrochemical reaction, abbreviated as standard potential, is defined as the standard potential of a hypothetical cell, in which the electrode (half-cell) at the left of the cell diagram is the standard hydrogen electrode (SHE) and the electrode at the right is the electrode in question. This implies that the cell reaction always involves the oxidation of molecular hydrogen. The standard hydrogen electrode consists of a platinum electrode in contact with a solution of H^{+} at unit activity and saturated with H_{2} gas with a fugacity referred to the standard pressure of $10^{5} \mathrm{~Pa}$ (see Section 2.11 .1 (v), p. 62). For a metallic electrode in equilibrium with solvated ions the cell diagram is

$$
\mathrm{Pt}\left|\mathrm{H}_{2}\right| \mathrm{H}^{+} \prod_{11}^{11} \mathrm{M}^{z+} \mid \mathrm{M}
$$

and relates to the reaction

$$
\mathrm{M}^{z+}+(z / 2) \mathrm{H}_{2}(\mathrm{~g})=\mathrm{M}+z \mathrm{H}^{+}
$$

This diagram may be abbreviated $E\left(\mathrm{M}^{z+} / \mathrm{M}\right)$, but the order of these symbols should not be reversed. Note that the standard hydrogen electrode as defined is limited to aqueous solutions. For more information on measuring electrode potentials in aqueous and non-aqueous systems, see [103, 107].

(vii) Anode, cathode

The terms anode and cathode may only be applied to electrochemical cells through which a net current flows. In a cell at equilibrium the terms plus pole and minus pole are used. An anode is an electrode at which the predominating electrochemical reaction is an oxidation; electrons are produced (in a galvanic cell) or extracted (in an electrolytic cell). A cathode is an electrode at which the predominating electrochemical reaction is a reduction which consumes the electrons from the anode, and that reach the cathode through the external circuit. Since electrons flow from lower to higher (more positive) electric potentials, in a galvanic cell they flow from the anode (the negative electrode) to the cathode (the positive electrode), while in an electrolytic cell the electrons extracted from the anode (the positive electrode) by the external source flow to the cathode (the negative electrode).

Note that in rechargeable batteries such as the lead-acid battery (lead accumulator), the positive electrode is a cathode during discharge and an anode during charge, and the negative electrode is the anode during discharge and the cathode during charge. In order to avoid confusion, it is recommended that in rechargeable batteries only the terms positive and negative electrodes (or plates) be used. For more detailed information on electrode potentials, see [109].
(viii) Definition of $\mathbf{p H}$ [116]

The quantity pH is defined in terms of the activity of hydrogen $(1+)$ ions (hydrogen ions) in solution:

$$
\mathrm{pH}=\mathrm{p} a_{\mathrm{H}^{+}}=-\lg \left(a_{\mathrm{H}^{+}}\right)=-\lg \left(m_{\mathrm{H}^{+}} \gamma_{\mathrm{m}, \mathrm{H}^{+}} / m^{\ominus}\right)
$$

where $a_{\mathrm{H}^{+}}$is the activity of the hydrogen(1+) (hydrogen ion) in solution, $\mathrm{H}^{+}(\mathrm{aq})$, and $\gamma_{\mathrm{m}, \mathrm{H}^{+}}$is the activity coefficient of $\mathrm{H}^{+}(\mathrm{aq})$ on the molality basis at molality $m_{\mathrm{H}^{+}}$. The symbol p is interpreted as an operator $(\mathrm{p} x=-\lg x)[116,117]$ (see Section 4.1, p. 103) with the unique exception of the symbol pH [117]. The symbol pH is also an exception to the rules for symbols and quantities (see Section 1.3 .1 , p. 5). The standard molality m^{θ} is chosen to be equal to $1 \mathrm{~mol} \mathrm{~kg}^{-1}$. Since pH is defined in terms of a quantity that cannot be measured independently, the above equation can be only regarded as a notional definition.

The establishment of primary pH standards requires the application of the concept of the "primary method of measurement" [116], assuring full traceability of the results of all measurements and their uncertainties. Any limitation in the theory or determination of experimental variables must be included in the estimated uncertainty of the method.

The primary method for the measurement of pH involves the use of a cell without transference, known as the Harned cell [118]:

$$
\mathrm{Pt}(\mathrm{~s})\left|\mathrm{H}_{2}(\mathrm{~g})\right| \text { Buffer } \mathrm{S}, \mathrm{Cl}^{-}(\mathrm{aq})|\mathrm{AgCl}(\mathrm{~s})| \mathrm{Ag}(\mathrm{~s})
$$

Application of the Nernst equation to the above leads to the relationship

$$
E=E^{\ominus}-\frac{R T \ln 10}{F} \lg \left[\left(m_{\mathrm{H}^{+}} \gamma_{\mathrm{H}^{+}} / m^{\ominus}\right)\left(m_{\mathrm{Cl}^{-}} \gamma_{\mathrm{Cl}^{-}} / m^{\ominus}\right)\right]
$$

where E is the potential difference of the cell and E^{\ominus} the standard potential of the $\mathrm{AgCl} \mid \mathrm{Ag}$ electrode. This equation can be rearranged to yield

$$
-\lg \left(a_{\mathrm{H}^{+}} \gamma_{\mathrm{Cl}^{-}}\right)=\frac{\left(E-E^{\ominus}\right)}{(R T \ln 10) / F}+\lg \left(m_{\mathrm{Cl}^{-}} / m^{\ominus}\right)
$$

Measurements of E are made and the quantity $-\lg \left(a_{\mathrm{H}^{+}} \gamma_{\mathrm{Cl}^{-}}\right)$is obtained by extrapolation to $m_{\mathrm{Cl}^{-}} / m^{\ominus}=0$. The value of $\gamma_{\mathrm{Cl}^{-}}$is calculated using the Bates-Guggenheim convention [117] based on Debye-Hückel theory. Then $-\lg \left(a_{\mathrm{H}^{+}}\right)$is calculated and identified as $\mathrm{pH}(\mathrm{PS})$, where PS signifies primary standard. The uncertainties in the two estimates are typically ± 0.001 in $-\lg \left(a_{\mathrm{H}^{+}} \gamma_{\mathrm{Cl}^{-}}\right)^{\ominus}$, and ± 0.003 in pH , respectively.

Materials for primary standard pH buffers must also meet the appropriate requirements for reference materials including chemical purity and stability, and applicability of the Bates-Guggenheim convention to the estimation of $\lg \left(\gamma_{\mathrm{Cl}^{-}}\right)$. This convention requires that the ionic strength must be $\leqslant 0.1 \mathrm{~mol} \mathrm{~kg}^{-1}$. Primary standard buffers should also lead to small liquid junction potentials when used in cells with liquid junctions. Secondary standards, $\mathrm{pH}(\mathrm{SS})$, are also available, but carry a greater uncertainty in measured values.

Practical pH measurements generally use cells involving liquid junctions in which, consequently, liquid junction potentials, E_{j}, are present [116]. Measurements of pH are not normally performed using the $\mathrm{Pt} \mid \mathrm{H}_{2}$ electrode, but rather the glass (or other H^{+}-selective) electrode, whose response factor $(\mathrm{d} E / \mathrm{dpH})$ usually deviates from the Nernst slope. The associated uncertainties are significantly larger than those associated with the fundamental measurements using the Harned cell. Nonetheless, incorporation of the uncertainties for the primary method, and for all subsequent measurements, permits the uncertainties for all procedures to be linked to the primary standards by an unbroken chain of comparisons.

Reference values for standards in $\mathrm{D}_{2} \mathrm{O}$ and aqueous-organic solvent mixtures exist [119].

2.14 COLLOID AND SURFACE CHEMISTRY

The recommendations given here are based on more extensive IUPAC recommendations [1.e $-1 . \mathrm{h}]$ and [120-123]. Catalyst characterization is described in [124] and quantities related to macromolecules in [125].

Name	Symbol	Definition	SI unit	Notes
specific surface area	$a_{\text {s }}, a, s$	$a_{\text {s }}=A / m$	$\mathrm{m}^{2} \mathrm{~kg}^{-1}$	1
surface amount of B	$n_{\mathrm{B}}{ }^{\text {s }}$		mol	2
adsorbed amount of B	$n_{\mathrm{B}}{ }^{\text {a }}$		mol	2
surface excess amount of B	$n_{\mathrm{B}}{ }^{\sigma}$		mol	3
surface excess concentration of B	$\Gamma_{\mathrm{B}},\left(\Gamma_{\mathrm{B}}{ }^{\sigma}\right)$	$\Gamma_{\mathrm{B}}=n_{\mathrm{B}}{ }^{\sigma} / A$	$\mathrm{mol} \mathrm{m}{ }^{-2}$	3
total surface excess concentration	$\Gamma,\left(\Gamma^{\sigma}\right)$	$\Gamma=\sum_{i} \Gamma_{i}$	$\mathrm{mol} \mathrm{m}{ }^{-2}$	
area per molecule	a, σ	$a_{\mathrm{B}}=A / N_{\mathrm{B}}{ }^{\text {a }}$	m^{2}	4
area per molecule in a filled monolayer	$a_{\mathrm{m}}, \sigma_{\mathrm{m}}$	$a_{\mathrm{m}, \mathrm{B}}=A / N_{\mathrm{m}, \mathrm{B}}$	m^{2}	4
surface coverage	θ	$\theta=N_{\mathrm{B}}{ }^{\mathrm{a}} / N_{\mathrm{m}, \mathrm{B}}$	1	4
contact angle	θ		rad, 1	
film thickness	t, h, δ		m	
thickness of (surface or interfacial) layer	τ, δ, t		m	
surface tension, interfacial tension	γ, σ	$\gamma=\left(\partial G / \partial A_{\mathrm{s}}\right)_{T, p, n_{i}}$	N m ${ }^{-1}, \mathrm{Jm}^{-2}$	
film tension	$\Sigma_{\text {f }}$	$\Sigma_{\mathrm{f}}=\left(\partial G / \partial A_{\mathrm{f}}\right)_{T, p, n_{i}}$	$\mathrm{Nm} \mathrm{m}^{-1}$	5
Debye length of the	$L_{\text {D }}$	$L_{\mathrm{D}}=\kappa^{-1}$	m	6

average molar masses
number-average
$M_{\mathrm{n}} \quad M_{\mathrm{n}}=\sum_{i} n_{i} M_{i} / \sum_{i} n_{i} \quad \mathrm{~kg} \mathrm{~mol}^{-1}$
mass-average
$M_{\mathrm{m}}, M_{\mathrm{w}} \quad M_{\mathrm{m}}=\sum_{i} n_{i} M_{i}{ }^{2} / \sum_{i} n_{i} M_{i} \quad \mathrm{~kg} \mathrm{~mol}^{-1}$
z-average
sedimentation coefficient
van der Waals constant
M_{z}
$M_{\mathrm{z}}=\sum_{i}^{i} n_{i} M_{i}{ }^{3} / \sum_{i}^{i} n_{i} M_{i}{ }^{2} \quad \mathrm{~kg} \mathrm{~mol}^{-1}$
s
$s=v / a$
s
retarded van der Waals
β, B
J
constant
van der Waals-Hamaker constant
surface pressure
A_{H}

J
$\mathrm{N} \mathrm{m}^{-1}$
8
(1) The subscript s designates any surface area where absorption or deposition of species may occur. m designates the mass of a solid absorbent.
(2) The value of $\bar{n}_{\mathrm{B}}{ }^{\mathrm{s}}$ depends on the thickness assigned to the surface layer (see also note 1, p. 47).
(3) The values of $n_{\mathrm{B}}{ }^{\sigma}$ and Γ_{B} depend on the convention used to define the position of the Gibbs surface. They are given by the excess amount of B or surface concentration of B over values that would apply if each of the two bulk phases were homogeneous right up to the Gibbs dividing surface.

Additional recommendations

The superscript s denotes the properties of a surface or interfacial layer. In the presence of adsorption it may be replaced by the superscript a.
Examples Helmholtz energy of interfacial layer amount of adsorbed substance amount of adsorbed O_{2} area per molecule B in a monolayer

```
As
n
na}(\mp@subsup{\textrm{O}}{2}{})\mathrm{ or }n(\mp@subsup{\textrm{O}}{2}{},\textrm{a}
a(B), a B
```

The superscript σ is used to denote a surface excess property relative to the Gibbs surface.

```
Example surface excess amount
n, }\mp@subsup{}{}{\sigma
```

(or Gibbs surface amount) of B

In general the values of Γ_{A} and Γ_{B} depend on the position chosen for the Gibbs dividing surface. However, two quantities, $\Gamma_{\mathrm{B}}{ }^{(\mathrm{A})}$ and $\Gamma_{\mathrm{B}}{ }^{(\mathrm{n})}$ (and correspondingly $n_{\mathrm{B}}{ }^{\sigma(\mathrm{A})}$ and $n_{\mathrm{B}}{ }^{\sigma(\mathrm{n})}$), may be defined in a way that is invariant to this choice (see [1.e]). $\Gamma_{\mathrm{B}}{ }^{(\mathrm{A})}$ is called the relative surface excess concentration of B with respect to A , or more simply the relative adsorption of B ; it is the value of Γ_{B} when the surface is chosen to make $\Gamma_{\mathrm{A}}=0 . \Gamma_{\mathrm{B}}{ }^{(\mathrm{n})}$ is called the reduced surface excess concentration of B , or more simply the reduced adsorption of B ; it is the value of Γ_{B} when the surface is chosen to make the total excess $\Gamma=\sum_{i} \Gamma_{i}=0$.

Properties of phases (α, β, γ) may be denoted by corresponding superscript indices.
Examples $\begin{array}{ll}\text { surface tension of phase } \alpha & \gamma^{\alpha} \\ \text { interfacial tension between phases } \alpha \text { and } \beta & \gamma^{\alpha \beta}\end{array}$

Symbols of thermodynamic quantities divided by surface area are usually the corresponding lower case letters; an alternative is to use a circumflex.
Example interfacial entropy per area $\quad s^{\mathrm{s}}\left(=\hat{s}^{\mathrm{S}}\right)=S^{\mathrm{s}} / A$
The following abbreviations are used in colloid chemistry:

```
ccc critical coagulation concentration
cmc critical micellisation concentration
iep isoelectric point
pzc point of zero charge
```

(Notes continued)
(3) (continued) See [1.e], and also additional recommendations on this page.
(4) $N_{\mathrm{B}}{ }^{\mathrm{a}}$ is the number of adsorbed molecules $\left(N_{\mathrm{B}}{ }^{\mathrm{a}}=L n_{\mathrm{B}}{ }^{\mathrm{a}}\right)$, and $N_{\mathrm{m}, \mathrm{B}}{ }^{\mathrm{a}}$ is the number of adsorbed molecules in a filled monolayer. The definition applies to entities B.
(5) In the equation, A_{f} is the area of the film.
(6) The characteristic Debye length [1.e] and [123] or Debye screening length [123] L_{D} appears in Gouy-Chapman theory and in the theory of semiconductor space-charge.
(7) In the definition, v is the velocity of sedimentation and a is the acceleration of free fall or centrifugation. The symbol for a limiting sedimentation coefficient is [s], for a reduced sedimentation coefficient s°, and for a reduced limiting sedimentation coefficient [s°]; see [1.e] for further details.
(8) In the definition, γ^{0} is the surface tension of the clean surface and γ that of the covered surface.

2.14.1 Surface structure [126]

(i) Single-crystal surface and vector designations

3D Miller indices $(h k l)$ are used to specify a surface termination with a ($h k l$) bulk plane. Families of symmetry-equivalent surfaces are designated $\{h k l\}$. Vector directions are designated $[h k l]$ and families of symmetry-equivalent vector directions $<h k l>$.

(ii) Notations for stepped surfaces (for ideally terminated bulk lattices)

Stepped surfaces (often consisting of mono-atomic height steps and terraces of arbitrary width) with general Miller indices $(h k l)$ are viewed as composed of alternating low-Miller-index facets $\left(h_{\mathrm{s}} k_{\mathrm{s}} l_{\mathrm{s}}\right)$ for the step faces and $\left(h_{\mathrm{t}} k_{\mathrm{t}} l_{\mathrm{t}}\right)$ for the terrace planes. The step notation designates such a surface as
$(h k l)=n\left(h_{\mathrm{t}} k_{\mathrm{t}} l_{\mathrm{t}}\right) \times\left(h_{\mathrm{s}} k_{\mathrm{s}} l_{\mathrm{s}}\right)$
where n measures the terrace width in units of atom rows.
Example The (755) surface of an fcc solid, with (111) oriented terraces and (100) oriented step faces is designated in the step notation as $6(111) \times(100)$.

The microfacet notation allows more complex surface terminations, using decomposition into three independent low-index facet orientations $\left(h_{1} k_{1} l_{1}\right),\left(h_{2} k_{2} l_{2}\right)$ and $\left(h_{3} k_{3} l_{3}\right)$:

$$
(h k l)=a_{\lambda}^{1}\left(h_{1} k_{1} l_{1}\right)+a_{\mu}^{2}\left(h_{2} k_{2} l_{2}\right)+a_{\nu}^{3}\left(h_{3} k_{3} l_{3}\right)
$$

The factors a^{β} are simple vectorial decomposition coefficients of $(h k l)$ onto the three microfacet Miller-index vectors, while the subscripts λ, μ and ν indicate the relative facet sizes in terms of 2 D unit cells on each facet.

Example The (10,8,7) surface of an fcc solid, with (111) oriented terraces and steps zigzagging with alternating orientations (111) and (100), is designated in the microfacet notation as $(10,8,7)=\left[(15 / 2)_{15}(111)+(1 / 2)_{1}(11 \overline{1})+2_{2}(100)\right]$.

(iii) Notations for superlattices at surfaces

Matrix notation: a 2D superlattice with basis vectors $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}$ on a bulk-like substrate with 2D surface basis vectors $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}$ satisfies the relation $\boldsymbol{b}_{1}=m_{11} \boldsymbol{a}_{1}+m_{12} \boldsymbol{a}_{2}$ and $\boldsymbol{b}_{2}=m_{21} \boldsymbol{a}_{1}+m_{22} \boldsymbol{a}_{2}$, thus defining a matrix $M=\left(\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right)$ that uniquely specifies the superlattice. If the matrix elements are all integers, the superlattice is termed commensurate with the substrate lattice.

Wood notation: in many cases the superlattice can be labeled as $i\left(\frac{b_{1}}{a_{1}} \times \frac{b_{2}}{a_{2}}\right) R \alpha^{\circ}$, where i is c for centered superlattices or i is p for primitive superlattices (p is often dropped) and α is a rotation angle relative to the substrate basis vectors (this part is dropped when $\alpha=0$).

Example The black and white chess board is a superlattice relative to the underlying set of all squares. This superlattice can be designated with a matrix $\left(\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right)$, which is equivalent to the Wood label $(\sqrt{2} \times \sqrt{2}) R 45^{\circ}$ or with the alternative description $c(2 \times 2)$.
(iv) Symbols

$\boldsymbol{a}_{1}, \boldsymbol{a}_{2}$	2D substrate basis vector
$\boldsymbol{a}_{1}{ }^{*}, \boldsymbol{a}_{2}{ }^{*}$	2D reciprocal substrate basis vector
$\boldsymbol{b}_{1}, \boldsymbol{b}_{2}$	2D superlattice basis vectors
$\boldsymbol{b}_{1}{ }^{*}, \boldsymbol{b}_{2}{ }^{*}$	2D reciprocal superlattice basis vectors
\boldsymbol{g}	2D reciprocal lattice vector
$h k$	2D Miller indices
$h k l$	3D Miller indices
M	matrix for superlattice notation
z	coordinate perpendicular to surface
θ	surface coverage
Θ_{D}	Debye temperature
$\Delta \phi_{\mathrm{W}}$	work function change
λ_{e}	electron mean free path
ϕ_{W}	work function

2.15 TRANSPORT PROPERTIES

The names and symbols recommended here are in agreement with those recommended by IUPAP [4] and ISO [5.m]. Further information on transport phenomena in electrochemical systems can also be found in [104].

The following symbols are used in the definitions: mass (m), time (t), volume (V), area (A), density (ρ), speed (v), length (l), viscosity (η), pressure (p), acceleration of free fall (g), cubic expansion coefficient (α), thermodynamic temperature (T), surface tension (γ), speed of sound (c), mean free path (λ), frequency (f), thermal diffusivity (a), coefficient of heat transfer (h), thermal conductivity (k), specific heat capacity at constant pressure $\left(c_{p}\right)$, diffusion coefficient (D), mole fraction (x), mass transfer coefficient (k_{d}), permeability (μ), electric conductivity (κ), and magnetic flux density (B).

Name	Symbol	Definition	SI unit	Notes
flux of mass m	q_{m}	$q_{m}=\mathrm{d} m / \mathrm{d} t$	$\mathrm{kg} \mathrm{s}^{-1}$	1
flux density of mass m	J_{m}	$J_{m}=q_{m} / A$	$\mathrm{kg} \mathrm{m}^{-2} \mathrm{~s}^{-1}$	2, 3
heat flux, thermal power	Φ, P	$\Phi=\mathrm{d} Q / \mathrm{d} t$	W	1
heat flux density	J_{q}	$J_{q}=\Phi / A$	$\mathrm{W} \mathrm{m}^{-2}$	3
thermal conductance	G	$G=\Phi / \Delta T$	W K ${ }^{-1}$	
thermal resistance	R	$R=1 / G$	K W ${ }^{-1}$	
thermal conductivity	λ, k	$\lambda=-J_{q} /(\mathrm{d} T / \mathrm{d} l)$	W m ${ }^{-1} \mathrm{~K}^{-1}$	
coefficient of heat transfer	$h,(k, K, \alpha)$	$h=J_{q} / \Delta T$	W m ${ }^{-2} \mathrm{~K}^{-1}$	
thermal diffusivity	a	$a=\lambda / \rho c_{p}$	$\mathrm{m}^{2} \mathrm{~s}^{-1}$	
diffusion coefficient	D	$D=-J_{n} /(\mathrm{d} c / \mathrm{d} l)$	$\mathrm{m}^{2} \mathrm{~s}^{-1}$	4
viscosity, shear viscosity	η	$\eta=-\tau_{x z}\left(\partial V_{x} / \partial z\right)^{-1}$	Pa s	5
bulk viscosity	κ	$\kappa=-\tau_{x x}(\boldsymbol{\nabla} \cdot \boldsymbol{V})^{-1}$	Pas $\mathrm{m}^{2} \mathrm{~K}^{-1} \mathrm{~s}^{-1}$	5

(1) A vector quantity, $\boldsymbol{q}_{m}=(\mathrm{d} m / \mathrm{d} t) \boldsymbol{e}$, where \boldsymbol{e} is the unit vector in the direction of the flow, can be defined, sometimes called the "flow rate" of m. Similar definitions apply to any extensive quantity.
(2) The flux density of molecules, J_{N}, determines either the rate at which the surface would be covered if each molecule stuck, or the rate of effusion through a hole in the surface. In studying the exposure, $\int J_{N} \mathrm{~d} t$, of a surface to a gas, surface scientists find it useful to use the product of pressure and time as a measure of the exposure, since this product is equal to the number flux density, J_{N}, times the time $J_{N} t=C(\bar{u} / 4) p t$, where C is the number density of molecules and \bar{u} their average speed. The unit langmuir (symbol L) corresponds to the exposure of a surface to a gas at $10^{-6} \mathrm{Torr}$ for 1 s .
(3) In previous editions, the term "flux" was used for what is now called "flux density", in agreement with IUPAP [4]. The term "density" in the name of an intensive physical quantity usually implies "extensive quantity divided by volume" for scalar quantities but "extensive quantity divided by area" for vector quantities denoting flow or flux.
(4) c is the amount concentration.
(5) See also Section 2.2, p. 15; τ is the shear stress tensor.

2.15.1 Transport characteristic numbers: Quantities of dimension one

(1) This quantity applies to the transport of matter in binary mixtures [72].
(2) The name Sherwood number and symbol $S h$ have been widely used for this quantity.

3 DEFINITIONS AND SYMBOLS FOR UNITS

3.1 THE INTERNATIONAL SYSTEM OF UNITS (SI)

The International System of Units (SI) was adopted by the 11th General Conference of Weights and Measures (CGPM) in 1960 [3]. It is a coherent system of units built from seven SI base units, one for each of the seven dimensionally independent base quantities (see Section 1.2, p. 4); they are: metre, kilogram, second, ampere, kelvin, mole, and candela for the base quantities length, mass, time, electric current, thermodynamic temperature, amount of substance, and luminous intensity, respectively. The definitions of the SI base units are given in Section 3.3, p. 87. The SI derived units are expressed as products of powers of the base units, analogous to the corresponding relations between physical quantities. If no numerical factors other than 1 are used in the defining equations for derived units, then the derived units defined in this way are called coherent derived units. The SI base units and the derived units without any multiple or sub-multiple prefixes form a coherent set of units, and are called the coherent SI units.

In the International System of Units there is only one coherent SI unit for each physical quantity. This is either the appropriate SI base unit itself (see Section 3.2, p. 86) or the appropriate SI derived unit (see sections 3.4 and 3.5 , p. 89 and 90). However, any of the approved decimal prefixes, called SI prefixes, may be used to construct decimal multiples or submultiples of SI units (see Section 3.6, p. 91). The SI units and the decimal multiples and submultiples constructed with the SI prefixes are called the complete set of SI units, or simply the SI units, or the units of the SI.

It is recommended that only units of the SI be used in science and technology (with SI prefixes where appropriate). Where there are special reasons for making an exception to this rule, it is recommended always to define the units in terms of SI units.

3.2 NAMES AND SYMBOLS FOR THE SI BASE UNITS

The symbols listed here are internationally agreed and shall not be changed in other languages or scripts. See sections 1.3 and 1.4, p. 5 and p. 6 on the printing of symbols for units.

	SI base unit		
Base quantity	Name	Symbol	
length	metre	m	
mass	kilogram	kg	
time	second	s	
electric current	ampere	A	
thermodynamic temperature	kelvin	K	
amount of substance	mole	mol	
luminous intensity	candela	cd	

3.3 DEFINITIONS OF THE SI BASE UNITS

The following definitions of the seven SI base units are adopted by the General Conference on Weights and Measures (CGPM) [3].

metre (symbol: m)

The metre is the length of path traveled by light in vacuum during a time interval of $\mathbf{1 / 2 9 9 7 9 2 4 5 8}$ of a second.
($17^{\text {th }}$ CGPM, 1983)
kilogram (symbol: kg)
The kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram.
$\left(3^{\text {rd }}\right.$ CGPM, 1901) ${ }^{1}$
second (symbol: s)
The second is the duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom.
($13^{\text {th }}$ CGPM, 1967)
This definition refers to a caesium atom at rest at a temperature of 0 K .
(CIPM, 1997)
In this definition it is understood that the Cs atom at a temperature of $T=0 \mathrm{~K}$ is unperturbed by black-body radiation. The frequency of primary frequency standards should therefore be corrected for the frequency shift due to the ambient radiation, as stated by the Consultative Committee for Time and Frequency (CCTF, 1999).
ampere (symbol: A)
The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 metre apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} newton per metre of length.
($9^{\text {th }}$ CGPM, 1948)

kelvin (symbol: K)

The kelvin, unit of thermodynamic temperature, is the fraction $1 / 273.16$ of the thermodynamic temperature of the triple point of water.
($13^{\text {th }}$ CGPM, 1967)
This definition refers to water having the isotopic composition defined exactly by the following amount-of-substance ratios: 0.00015576 mole of ${ }^{2} \mathrm{H}$ per mole of ${ }^{1} \mathrm{H}, 0.0003799$ mole of ${ }^{17} \mathrm{O}$ per mole of ${ }^{16} \mathrm{O}$, and 0.0020052 mole of ${ }^{18} \mathrm{O}$ per mole of ${ }^{16} \mathrm{O}$.
(CIPM, 2005) ${ }^{2}$

[^6]mole (symbol: mol)

1. The mole is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon 12; its symbol is "mol".
2. When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles.
($14^{\text {th }}$ CGPM, 1971)
In this definition, it is understood that unbound atoms of carbon 12, at rest and in their ground state, are referred to.
(CIPM, 1980)

Examples of the use of the mole

1 mol of ${ }^{1} \mathrm{H}_{2}$ contains about $6.022 \times 10^{23}{ }^{1} \mathrm{H}_{2}$ molecules, or $12.044 \times 10^{23}{ }^{1} \mathrm{H}$ atoms
1 mol of HgCl has a mass of 236.04 g
1 mol of $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ has a mass of 472.09 g
1 mol of $\mathrm{Hg}_{2}{ }^{2+}$ has a mass of 401.18 g and a charge of 192.97 kC
1 mol of $\mathrm{Fe}_{0.91} \mathrm{~S}$ has a mass of 82.88 g
1 mol of e^{-}has a mass of $548.58 \mu \mathrm{~g}$ and a charge of -96.49 kC
1 mol of photons whose frequency is $5 \times 10^{14} \mathrm{~Hz}$
has an energy of about 199.5 kJ

Specification of the entity does not imply that the entities are identical: one may have 1 mol of an isotope mixture or gas mixture.
candela (symbol: cd)
The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540×10^{12} hertz and that has a radiant intensity in that direction of $1 / 683$ watt per steradian.
($16^{\text {th }}$ CGPM, 1979)

3.4 SI DERIVED UNITS WITH SPECIAL NAMES AND SYMBOLS

(1) Radian and steradian are derived units. Since they are then of dimension 1 , this leaves open the possibility of including them or omitting them in expressions of SI derived units. In practice this means that rad and sr may be used when appropriate and may be omitted if clarity is not lost.
(2) For angular frequency and for angular velocity the unit rad s ${ }^{-1}$, or simply s^{-1}, should be used, and this may not be replaced with Hz . The unit Hz shall be used only for frequency in the sense of cycles per second.
(3) The Celsius temperature t is defined by the equation

$$
t /{ }^{\circ} \mathrm{C}=T / \mathrm{K}-273.15
$$

The SI unit of Celsius temperature is the degree Celsius, ${ }^{\circ} \mathrm{C}$, which is equal to the kelvin, K. ${ }^{\circ} \mathrm{C}$ shall be treated as a single symbol, with no space between the ${ }^{\circ}$ sign and the C . The symbol ${ }^{\circ} \mathrm{K}$, and the symbol ${ }^{\circ}$, shall no longer be used for the unit of thermodynamic temperature.
(4) Becquerel is the basic unit to be used in nuclear and radiochemistry; becquerel, gray, and sievert are admitted for reasons of safeguarding human health [3].
(5) When the amount of a catalyst cannot be expressed as a number of elementary entities, an amount of substance, or a mass, a "catalytic activity" can still be defined as a property of the catalyst measured by a catalyzed rate of conversion under specified optimized conditions. The katal, 1 kat $=1 \mathrm{~mol} \mathrm{~s}^{-1}$, should replace the "(enzyme) unit", $1 \mathrm{U}=\mu \mathrm{mol} \mathrm{min}^{-1} \approx 16.67$ nkat [130].

3.5 SI DERIVED UNITS FOR OTHER QUANTITIES

This table gives examples of other SI derived units; the list is merely illustrative.

(1) The word "wavenumber" denotes the quantity "reciprocal wavelength". Its widespread use to denote the unit cm^{-1} should be discouraged.
(2) The words "amount concentration" are an abbreviation for "amount-of-substance concentration". When there is not likely to be any ambiguity this quantity may be called simply "concentration".

3.6 SI PREFIXES AND PREFIXES FOR BINARY MULTIPLES

The following prefixes [3] are used to denote decimal multiples and submultiples of SI units.

Submultiple	Prefix		Multiple	Prefix	
	Name	Symbol		Name	Symbol
10^{-1}	deci	d	10^{1}	deca	da
10^{-2}	centi	c	10^{2}	hecto	h
10^{-3}	milli	m	10^{3}	kilo	k
10^{-6}	micro	μ	10^{6}	mega	M
10^{-9}	nano	n	10^{9}	giga	G
10^{-12}	pico	p	10^{12}	tera	T
10^{-15}	femto	f	10^{15}	peta	P
10^{-18}	atto	a	10^{18}	exa	E
10^{-21}	zepto	Z	10^{21}	zetta	Z
10^{-24}	yocto	y	10^{24}	yotta	Y

Prefix symbols shall be printed in Roman (upright) type with no space between the prefix and the unit symbol.

Example kilometre, km
When a prefix is used with a unit symbol, the combination is taken as a new symbol that can be raised to any power without the use of parentheses.

Examples $1 \mathrm{~cm}^{3}=\left(10^{-2} \mathrm{~m}\right)^{3}=10^{-6} \mathrm{~m}^{3}$
$1 \mu \mathrm{~s}^{-1}=\left(10^{-6} \mathrm{~s}\right)^{-1}=10^{6} \mathrm{~s}^{-1}$
$1 \mathrm{~V} / \mathrm{cm}=1 \mathrm{~V} /\left(10^{-2} \mathrm{~m}\right)=10^{2} \mathrm{~V} / \mathrm{m}$
$1 \mathrm{mmol} / \mathrm{dm}^{3}=10^{-3} \mathrm{~mol} /\left(10^{-3} \mathrm{~m}^{3}\right)=1 \mathrm{~mol} \mathrm{~m}{ }^{-3}$
A prefix shall never be used on its own, and prefixes are not to be combined into compound prefixes.

Example pm, not $\mu \mu \mathrm{m}$

The names and symbols of decimal multiples and submultiples of the SI base unit of mass, the kilogram, symbol kg, which already contains a prefix, are constructed by adding the appropriate prefix to the name gram and symbol g .

Examples mg, not $\mu \mathrm{kg} ; \mathrm{Mg}$, not kkg

The International Electrotechnical Commission (IEC) has standardized the following prefixes for binary multiples, mainly used in information technology, to be distinguished from the SI prefixes for decimal multiples [7].

	Prefix		
Multiple	Name	Symbol	Origin
$\left(2^{10}\right)^{1}=(1024)^{1}$	kibi	Ki	kilobinary
$\left(2^{10}\right)^{2}=(1024)^{2}$	mebi	Mi	megabinary
$\left(2^{10}\right)^{3}=(1024)^{3}$	gibi	Gi	gigabinary
$\left(2^{10}\right)^{4}=(1024)^{4}$	tebi	Ti	terabinary
$\left(2^{10}\right)^{5}=(1024)^{5}$	pebi	Pi	petabinary
$\left(2^{10}\right)^{6}=(1024)^{6}$	exbi	Ei	exabinary
$\left(2^{10}\right)^{7}=(1024)^{7}$	zebi	Zi	zettabinary
$\left(2^{10}\right)^{8}=(1024)^{8}$	yobi	Yi	yottabinary

3.7 NON-SI UNITS ACCEPTED FOR USE WITH THE SI

The following units are not part of the SI, but it is recognized by the CGPM [3] that they will continue to be used in appropriate contexts. SI prefixes may be attached to some of these units, such as millilitre, mL; megaelectronvolt, MeV; kilotonne, kt. A more extensive list of non-SI units, with conversion factors to the corresponding SI units, is given in Chapter 7, p. 129.

(1) The alternative symbol L is the only exception of the general rule that symbols for units shall be printed in lower case letters unless they are derived from a personal name. In order to avoid the risk of confusion between the letter 1 and the number 1 , the use of L is accepted. However, only the lower case 1 is used by ISO and IEC.
(2) For logarithmic ratio quantities and their units, see [131].
(3) The values of these units in terms of the corresponding SI units are not exact, since they depend on the values of the physical constants e (for electronvolt) and $m_{\mathrm{a}}\left({ }^{12} \mathrm{C}\right)$ or N_{A} (for the unified atomic mass unit), which are determined by experiment, see Chapter 5, p. 111.
(4) The dalton, with symbol Da, and the unified atomic mass unit, with symbol u, are alternative names for the same unit. The dalton may be combined with SI prefixes to express the masses of large or small entities.
(5) There is no agreed symbol for the nautical mile. The SI Brochure uses the symbol M.
(6) The astronomical unit is a unit of length approximately equal to the mean Earth-Sun distance. Its value is such that, when used to describe the motion of bodies in the Solar System, the heliocentric gravitational constant is (0.01720209895$)^{2}$ ua $^{3} \mathrm{~d}^{-2}$ (see also [3]).

3.8 COHERENT UNITS AND CHECKING DIMENSIONS

If equations between numerical values have the same form as equations between physical quantities, then the system of units defined in terms of base units avoids numerical factors between units, and is said to be a coherent system. For example, the kinetic energy T of a particle of mass m moving with a speed v is defined by the equation

$$
T=(1 / 2) m v^{2}
$$

but the SI unit of kinetic energy is the joule, defined by the equation

$$
\mathrm{J}=\mathrm{kg}(\mathrm{~m} / \mathrm{s})^{2}=\mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}
$$

where it is to be noted that the factor $(1 / 2)$ is omitted. In fact the joule, symbol J , is simply a special name and symbol for the product of units $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$.

The International System (SI) is a coherent system of units. The advantage of a coherent system of units is that if the value of each quantity is substituted for the quantity symbol in any quantity equation, then the units may be canceled, leaving an equation between numerical values which is exactly similar (including all numerical factors) to the original equation between the quantities. Checking that the units cancel in this way is sometimes described as checking the dimensions of the equation.

The use of a coherent system of units is not essential. In particular the use of multiple or submultiple prefixes destroys the coherence of the SI, but is nonetheless often convenient.

3.9 FUNDAMENTAL PHYSICAL CONSTANTS USED AS UNITS

Sometimes fundamental physical constants, or other well defined physical quantities, are used as though they were units in certain specialized fields of science. For example, in astronomy it may be more convenient to express the mass of a star in terms of the mass of the sun, and to express the period of the planets in their orbits in terms of the period of the earth's orbit, rather than to use SI units. In atomic and molecular physics it is similarly more convenient to express masses in terms of the electron mass, m_{e}, or in terms of the unified atomic mass unit, $1 \mathrm{u}=m_{\mathrm{u}}=m\left({ }^{12} \mathrm{C} / 12\right)$, and to express charges in terms of the elementary charge e, rather than to use SI units. One reason for using such physical quantities as though they were units is that the nature of the experimental measurements or calculations in the specialized field may be such that results are naturally obtained in such terms, and can only be converted to SI units at a later stage. When physical quantities are used as units in this way their relation to the SI must be determined by experiment, which is subject to uncertainty, and the conversion factor may change as new and more precise experiments are developed. Another reason for using such units is that uncertainty in the conversion factor to the SI may be greater than the uncertainty in the ratio of the measurements expressed in terms of the physical constant as a unit. Both reasons make it preferable to present experimental results without converting to SI units.

Three such physical quantities that have been recognized as units by the CIPM are the electronvolt (eV), the dalton (Da) or the unified atomic mass unit (u), and the astronomical unit (ua), listed below [3]. The electronvolt is the product of a fundamental constant (the elementary charge, e) and the SI unit of potential difference (the volt, V). The dalton is related to the mass of the carbon- 12 nuclide, and is thus a fundamental constant. The astronomical unit is a more arbitrarily defined constant that is convenient to astronomers. However, there are many other physical quantities or fundamental constants that are sometimes used in this way as though they were units, so that it is hardly possible to list them all.

(1) The electronvolt is the kinetic energy acquired by an electron in passing through a potential barrier of 1 V in vacuum.
(2) The dalton and the unified atomic mass unit are alternative names for the same unit. The dalton may be combined with the SI prefixes to express the masses of large molecules in kilodalton (kDa) or megadalton (MDa).
(3) The value of the astronomical unit in SI units is defined such that, when used to describe the motion of bodies in the solar system, the heliocentric gravitational constant is (0.017 20209895$)^{2}$ ua ${ }^{3} \mathrm{~d}^{-2}$. The value must be obtained from experiment, and is therefore not known exactly (see also [3]).

3.9.1 Atomic units [22] (see also Section 7.3, p. 143)

One particular group of physical constants that are used as though they were units deserve special mention. These are the so-called atomic units and arise in calculations of electronic wavefunctions for atoms and molecules, i.e. in quantum chemistry. The first five atomic units in the table below have special names and symbols. Only four of these are independent; all others may be derived by multiplication and division in the usual way, and the table includes a number of examples. The
relation between the five named atomic units may be expressed by any one of the equations

$$
E_{\mathrm{h}}=\hbar^{2} / m_{\mathrm{e}} a_{0}^{2}=e^{2} / 4 \pi \varepsilon_{0} a_{0}=m_{\mathrm{e}} e^{4} /\left(4 \pi \varepsilon_{0}\right)^{2} \hbar^{2}
$$

The relation of atomic units to the corresponding SI units involves the values of the fundamental physical constants, and is therefore not exact. The numerical values in the table are from the CODATA compilation [23] and based on the fundamental constants given in Chapter 5, p. 111. The numerical results of calculations in theoretical chemistry are frequently quoted in atomic units, or as numerical values in the form physical quantity divided by atomic unit, so that the reader may make the conversion using the current best estimates of the physical constants.

Physical quantity	Name of unit	Symbol for unit	Value in SI units	Notes
mass	electron mass	$m_{\text {e }}$	$=9.10938215(45) \times 10^{-31} \mathrm{~kg}$	
charge	elementary charge	e	$=1.602176487(40) \times 10^{-19} \mathrm{C}$	
action, (angular momentum)	Planck constant divided by 2π	\hbar	$=1.054571628(53) \times 10^{-34} \mathrm{~J} \mathrm{~s}$	1
length	Bohr radius	a_{0}	$=5.2917720859(36) \times 10^{-11} \mathrm{~m}$	1
energy	Hartree energy	E_{h}	$=4.35974394(22) \times 10^{-18} \mathrm{~J}$	1
time		\hbar / E_{h}	$=2.418884326505(16) \times 10^{-17} \mathrm{~s}$	
speed		$a_{0} E_{\mathrm{h}} / \hbar$	$=2.1876912541(15) \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$	2
force		E_{h} / a_{0}	$=8.23872206(41) \times 10^{-8} \mathrm{~N}$	
linear momentum		\hbar / a_{0}	$=1.992851565(99) \times 10^{-24} \mathrm{~N} \mathrm{~s}$	
electric current		$e E_{\mathrm{h}} / \hbar$	$=6.62361763(17) \times 10^{-3} \mathrm{~A}$	
electric field		$E_{\mathrm{h}} / e a_{0}$	$=5.14220632(13) \times 10^{11} \mathrm{~V} \mathrm{~m}^{-1}$	
electric dipole moment		$e a_{0}$	$=8.47835281(21) \times 10^{-30} \mathrm{C} \mathrm{m}$	
electric quadrupole moment		$e a_{0}{ }^{2}$	$=4.48655107(11) \times 10^{-40} \mathrm{C} \mathrm{m}^{2}$	
electric polarizability		$e^{2} a_{0}{ }^{2} / E_{\mathrm{h}}$	$=1.6487772536(34) \times 10^{-41} \mathrm{C}^{2} \mathrm{~m}^{2} \mathrm{~J}^{-1}$	
1st hyper-polarizability		$e^{3} a_{0}{ }^{3} / E_{\mathrm{h}}^{2}$	$=3.206361533(81) \times 10^{-53} \mathrm{C}^{3} \mathrm{~m}^{3} \mathrm{~J}^{-2}$	
2nd hyper-polarizability		$e^{4} a_{0}{ }^{4} / E_{\mathrm{h}}^{3}$	$=6.23538095(31) \times 10^{-65} \mathrm{C}^{4} \mathrm{~m}^{4} \mathrm{~J}^{-3}$	
magnetic flux density		$\hbar / e a_{0}{ }^{2}$	$=2.350517382(59) \times 10^{5} \mathrm{~T}$	
magnetic dipole moment		$e \hbar / m_{\mathrm{e}}$	$=1.854801830(46) \times 10^{-23} \mathrm{~J} \mathrm{~T}^{-1}$	3
magnetizability		$e^{2} a_{0}{ }^{2} / m_{e}$	$=7.891036433(27) \times 10^{-29} \mathrm{~J} \mathrm{~T}^{-2}$	

(1) $\hbar=h / 2 \pi ; a_{0}=4 \pi \varepsilon_{0} \hbar^{2} / m_{\mathrm{e}} e^{2} ; E_{\mathrm{h}}=\hbar^{2} / m_{\mathrm{e}} a_{0}{ }^{2}$.
(2) The numerical value of the speed of light, when expressed in atomic units, is equal to the reciprocal of the fine-structure constant α;
$c /($ au of speed $)=c \hbar / a_{0} E_{\mathrm{h}}=\alpha^{-1}=137.035999679(94)$.
(3) The atomic unit of magnetic dipole moment is twice the Bohr magneton, μ_{B}.

3.9.2 The equations of quantum chemistry expressed in terms of reduced quantities using atomic units

It is customary to write the equations of quantum chemistry in terms of reduced quantities. Thus energies are expressed as reduced energies E^{*}, distances as reduced distances r^{*}, masses as reduced masses m^{*}, charges as reduced charges Q^{*}, and angular momenta as reduced angular momenta J^{*}, where the reduced quantities are given by the equations

$$
\begin{equation*}
E^{*}=E / E_{\mathrm{h}}, r^{*}=r / a_{0}, m^{*}=m / m_{\mathrm{e}}, \quad Q^{*}=Q / e, \quad \text { and } \quad J^{*}=J / \hbar \tag{1}
\end{equation*}
$$

The reduced quantity in each case is the dimensionless ratio of the actual quantity to the corresponding atomic unit. The advantage of expressing all the equations in terms of reduced quantities is that the equations are simplified since all the physical constants disappear from the equations (although this simplification is achieved at the expense of losing the advantage of dimensional checking, since all reduced quantities are dimensionless). For example the Schrödinger equation for the hydrogen atom, expressed in the usual physical quantities, has the form

$$
\begin{equation*}
-\left(\hbar^{2} / 2 m_{\mathrm{e}}\right) \nabla_{r}^{2} \psi(r, \theta, \phi)+V(r) \psi(r, \theta, \phi)=E \psi(r, \theta, \phi) \tag{2}
\end{equation*}
$$

Here r, θ, and ϕ are the coordinates of the electron, and the operator ∇_{r} involves derivatives $\partial / \partial r, \partial / \partial \theta$, and $\partial / \partial \phi$. However in terms of reduced quantities the corresponding equation has the form

$$
\begin{equation*}
-(1 / 2) \nabla_{r^{*}}^{2} \psi\left(r^{*}, \theta, \phi\right)+V^{*}\left(r^{*}\right) \psi\left(r^{*}, \theta, \phi\right)=E^{*} \psi\left(r^{*}, \theta, \phi\right) \tag{3}
\end{equation*}
$$

where $\nabla_{r^{*}}$ involves derivatives $\partial / \partial r^{*}, \partial / \partial \theta$, and $\partial / \partial \phi$. This may be shown by substituting the reduced (starred) quantities for the actual (unstarred) quantities in Equation (2) which leads to Equation (3).

In the field of quantum chemistry it is customary to write all equations in terms of reduced (starred) quantities, so that all quantities become dimensionless, and all fundamental constants such as $e, m_{\mathrm{e}}, \hbar, E_{\mathrm{h}}$, and a_{0} disappear from the equations. As observed above this simplification is achieved at the expense of losing the possibility of dimensional checking. To compare the results of a numerical calculation with experiment it is of course necessary to transform the calculated values of the reduced quantities back to the values of the actual quantities using Equation (1).

Unfortunately it is also customary not to use the star that has been used here, but instead to use exactly the same symbol for the dimensionless reduced quantities and the actual quantities. This makes it impossible to write equations such as (1). (It is analogous to the situation that would arise if we were to use exactly the same symbol for h and \hbar, where $\hbar=h / 2 \pi$, thus making it impossible to write the relation between h and \hbar.) This may perhaps be excused on the grounds that it becomes tedious to include a star on the symbol for every physical quantity when writing the equations in quantum chemistry, but it is important that readers unfamiliar with the field should realize what has been done. It is also important to realize how the values of quantities "expressed in atomic units", i.e. the values of reduced quantities, may be converted back to the values of the original quantities in SI units.

It is also customary to make statements such as "in atomic units $e, m_{\mathrm{e}}, \hbar, E_{\mathrm{h}}$, and a_{0} are all equal to 1 ", which is not a correct statement. The correct statement would be that in atomic units the elementary charge is equal to $1 e$, the mass of an electron is equal to $1 m_{\mathrm{e}}$, etc. The difference between equations such as (3), which contain no fundamental constants, and (2) which do contain fundamental constants, concerns the quantities rather than the units. In (3) all the quantities are dimensionless reduced quantities, defined by (1), whereas in (2) the quantities are the usual (dimensioned) physical quantities with which we are familiar in other circumstances.

Finally, many authors make no use of the symbols for the atomic units listed in the tables above, but instead use the symbol "a.u." or "au" for all atomic units. This custom should not be followed. It leads to confusion, just as it would if we were to write "SI" as a symbol for every SI unit, or "CGS" as a symbol for every CGS unit.

Examples For the hydrogen molecule the equilibrium bond length r_{e}, and the dissociation energy D_{e}, are given by

$$
\begin{array}{lll}
r_{\mathrm{e}}=2.1 a_{0} & \text { not } & r_{\mathrm{e}}=2.1 \text { a.u. } \\
D_{\mathrm{e}}=0.16 E_{\mathrm{h}} & \text { not } & D_{\mathrm{e}}=0.16 \text { a.u. }
\end{array}
$$

3.10 DIMENSIONLESS QUANTITIES

Values of dimensionless physical quantities, more properly called "quantities of dimension one", are often expressed in terms of mathematically exactly defined values denoted by special symbols or abbreviations, such as \% (percent). These symbols are then treated as units, and are used as such in calculations.

3.10.1 Fractions (relative values, yields, and efficiencies)

Fractions such as relative uncertainty, amount-of-substance fraction x (also called amount fraction), mass fraction w, and volume fraction φ (see Section 2.10, p. 47 for all these quantities), are sometimes expressed in terms of the symbols in the table below.

Name	Symbol	Value	Example
percent	$\%$	10^{-2}	The isotopic abundance of carbon-13 expressed as an amount-of-substance fraction is $x=1.1 \%$.
permille	$\%$	10^{-3}	The mass fraction of water in a sample is $w=2.3 \%$

These multiples of the unit one are not part of the SI and ISO recommends that these symbols should never be used. They are also frequently used as units of "concentration" without a clear indication of the type of fraction implied, e.g. amount-of-substance fraction, mass fraction or volume fraction. To avoid ambiguity they should be used only in a context where the meaning of the quantity is carefully defined. Even then, the use of an appropriate SI unit ratio may be preferred.
Examples The mass fraction $w=1.5 \times 10^{-6}=1.5 \mathrm{mg} / \mathrm{kg}$.
The amount-of-substance fraction $x=3.7 \times 10^{-2}=3.7 \%$ or $x=37 \mathrm{mmol} / \mathrm{mol}$.
Atomic absorption spectroscopy shows the aqueous solution to contain a mass concentration of nickel $\rho(\mathrm{Ni})=2.6 \mathrm{mg} \mathrm{dm}{ }^{-3}$, which is approximately equivalent to a mass fraction $w(\mathrm{Ni})=2.6 \times 10^{-6}$.
Note the importance of using the recommended name and symbol for the quantity in each of the above examples. Statements such as "the concentration of nickel was 2.6×10^{-6} " are ambiguous and should be avoided.

The last example illustrates the approximate equivalence of $\rho / \mathrm{mg} \mathrm{dm}^{-3}$ and $w / 10^{-6}$ in aqueous solution, which follows from the fact that the mass density of a dilute aqueous solution is always approximately $1.0 \mathrm{~g} \mathrm{~cm}^{-3}$. Dilute solutions are often measured or calibrated to a known mass concentration in $\mathrm{mg} \mathrm{dm}^{-3}$, and this unit is then to be preferred to using ppm (or other corresponding abbreviations, which are language dependent) to specify a mass fraction.

3.10.2 Deprecated usage

Adding extra labels to \% and similar symbols, such as \% (V / V) (meaning \% by volume) should be avoided. Qualifying labels may be added to symbols for physical quantities, but never to units.
Example A mass fraction $w=0.5 \%$, but not $0.5 \%(\mathrm{~m} / \mathrm{m})$.
The symbol \% should not be used in combination with other units. In table headings and in labeling the axes of graphs the use of $\%$ in the denominator is to be avoided. Although one would write $x\left({ }^{13} \mathrm{C}\right)=1.1 \%$, the notation $100 x$ is to be preferred to $x / \%$ in tables and graphs (see for example Section 6.3, column 5, p. 122).

The further symbols listed in the table below are also found in the literature, but their use is not recommended. Note that the names and symbols for 10^{-9} and 10^{-12} in this table are here based on the American system of names. In other parts of the world, a billion often stands for 10^{12} and a trillion for 10^{18}. Note also that the symbol ppt is sometimes used for part per thousand, and sometimes for part per trillion. In 1948 the word billion had been proposed for 10^{12} and trillion for 10^{18} [132]. Although ppm, ppb, ppt and alike are widely used in various applications of analytical and environmental chemistry, it is suggested to abandon completely their use because of the ambiguities involved. These units are unnecessary and can be easily replaced by SI-compatible quantities such as $\mathrm{pmol} / \mathrm{mol}$ (picomole per mole), which are unambiguous. The last column contains suggested replacements (similar replacements can be formulated as $\mathrm{mg} / \mathrm{g}, \mu \mathrm{g} / \mathrm{g}, \mathrm{pg} / \mathrm{g}$ etc.).

Name	Symbol	Value	Examples	Replacement
part per hundred	pph, \%	10^{-2}	Th	
part per thousand, permille ${ }^{1}$	ppt, \%	10^{-3}	An approximate preindustrial value of the CO_{2} content of the Earth's atmosphere was 0.275% (0.275 ppt).	$\mathrm{mmol} / \mathrm{mol}$
			The element Ti has a mass fraction 5.65% $\left(5.65 \times 10^{3} \mathrm{ppm}\right)$ in the Earth's crust.	\% mg/g
part per million	ppm	10^{-6}	The volume fraction of helium is 20 ppm .	$\mu \mathrm{mol} / \mathrm{mol}$
part per hundred million	pphm	10^{-8}	The mass fraction of impurity in the metal was less than 5 pphm .	
part per billion	ppb	10^{-9}	The air quality standard for ozone is a volume fraction of $\varphi=120 \mathrm{ppb}$.	$\mathrm{nmol} / \mathrm{mol}$
part per trillion	ppt	10^{-12}	The natural background volume fraction of NO in air was found to be $\varphi=140 \mathrm{ppt}$.	pmol/mol
part per quadrillion	ppq	10^{-15}		fmol/mol

${ }^{1}$ The permille is also spelled per mill, permill, per mil, permil, per mille, or promille.

3.10.3 Units for logarithmic quantities: neper, bel, and decibel

In some fields, especially in acoustics and telecommunications, special names are given to the number 1 when expressing physical quantities defined in terms of the logarithm of a ratio [131]. For a damped linear oscillation the amplitude of a quantity as a function of time is given by

$$
F(t)=A \mathrm{e}^{-\delta t} \cos \omega t=A \operatorname{Re}\left[\mathrm{e}^{(-\delta+\mathrm{i} \omega) t}\right]
$$

From this relation it is clear that the coherent SI unit for the decay coefficient δ and the angular frequency ω is the second to the power of minus one, s^{-1}. However, the special names neper, Np , and radian, rad (see Section 2.1, p. 13, Section 3.4, p. 89, and Section 3.7, p. 92), are used for the units of the dimensionless products δt and ωt, respectively. Thus the quantities δ and ω may be expressed in the units Np / s and $\mathrm{rad} / \mathrm{s}$, respectively. Used in this way the neper, Np , and the radian, rad, may both be thought of as special names for the number 1 .

In the fields of acoustics and signal transmission, signal power levels and signal amplitude levels (or field level) are usually expressed as the decadic or the napierian logarithm of the ratio of the power P to a reference power P_{0}, or of the field F to a reference field F_{0}. Since power is often proportional to the square of the field or amplitude (when the field acts on equal impedances in linear systems) it is convenient to define the power level and the field level to be equal in such a case. This is done by defining the field level and the power level according to the relations

$$
L_{F}=\ln \left(F / F_{0}\right), \quad \text { and } \quad L_{P}=(1 / 2) \ln \left(P / P_{0}\right)
$$

so that if $\left(P / P_{0}\right)=\left(F / F_{0}\right)^{2}$ then $L_{P}=L_{F}$. The above equations may be written in the form

$$
L_{F}=\ln \left(F / F_{0}\right) \mathrm{Np}, \quad \text { and } \quad L_{P}=(1 / 2) \ln \left(P / P_{0}\right) \mathrm{Np}
$$

The bel, B , and its more frequently used submultiple the decibel, dB , are used when the field and power levels are calculated using decadic logarithms according to the relations

$$
L_{P}=\lg \left(P / P_{0}\right) \mathrm{B}=10 \lg \left(P / P_{0}\right) \mathrm{dB}
$$

and

$$
L_{F}=2 \lg \left(F / F_{0}\right) \mathrm{B}=20 \lg \left(F / F_{0}\right) \mathrm{dB}
$$

The relation between the bel and the neper follows from comparing these equations with the preceeding equations. We obtain

$$
L_{F}=\ln \left(F / F_{0}\right) \mathrm{Np}=2 \lg \left(F / F_{0}\right) \mathrm{B}=\ln (10) \lg \left(F / F_{0}\right) \mathrm{Np}
$$

giving

$$
1 \mathrm{~B}=10 \mathrm{~dB}=(1 / 2) \ln (10) \mathrm{Np} \approx 1.151293 \mathrm{~Np}
$$

In practice the bel is hardly ever used. Only the decibel is used, to represent the decadic logarithm, particularly in the context of acoustics, and in labeling the controls of power amplifiers. Thus the statement $L_{P}=n \mathrm{~dB}$ implies that $10 \lg \left(P / P_{0}\right)=n$.

The general use of special units for logarithmic quantities is discussed in [131]. The quantities power level and field level, and the units bel, decibel and neper, are given in the table and notes that follow.

Name	Quantity	Numerical value multiplied by unit	Notes
field level	$L_{F}=\ln \left(F / F_{0}\right)$	$=\ln \left(F / F_{0}\right) \mathrm{Np}=2 \lg \left(F / F_{0}\right) \mathrm{B}=20 \lg \left(F / F_{0}\right) \mathrm{dB}$	$1-3$
power level $L_{P}=(1 / 2) \ln \left(P / P_{0}\right)$	$=(1 / 2) \ln \left(P / P_{0}\right) \mathrm{Np}=\lg \left(P / P_{0}\right) \mathrm{B}=10 \lg \left(P / P_{0}\right) \mathrm{dB}$	$4-6$	

(1) F_{0} is a reference field quantity, which should be specified.
(2) In the context of acoustics the field level is called the sound pressure level and given the symbol L_{p}, and the reference pressure $p_{0}=20 \mu \mathrm{~Pa}$.
(3) For example, when $L_{F}=1 \mathrm{~Np}, F / F_{0}=\mathrm{e} \approx 2.7182818$.
(4) P_{0} is a reference power, which should be specified. The factor $1 / 2$ is included in the definition to make $L_{P} \widehat{=} L_{F}$.
(5) In the context of acoustics the power level is called the sound power level and given the symbol L_{W}, and the reference power $P_{0}=1 \mathrm{pW}$.
(6) For example, when $L_{P}=1 \mathrm{~B}=10 \mathrm{~dB}, P / P_{0}=10$; and when $L_{P}=2 \mathrm{~B}=20 \mathrm{~dB}, P / P_{0}=100$; etc.

4.1 PRINTING OF NUMBERS AND MATHEMATICAL SYMBOLS [5.a]

1. Numbers in general shall be printed in Roman (upright) type. The decimal sign between digits in a number should be a point (e.g. 2.3) or a comma (e.g. 2,3). When the decimal sign is placed before the first significant digit of a number, a zero shall always precede the decimal sign. To facilitate the reading of long numbers the digits may be separated into groups of three about the decimal sign, using only a thin space (but never a point or a comma, nor any other symbol). However, when there are only four digits before or after the decimal marker we recommend that no space is required and no space should be used.

$$
\begin{array}{llllll}
\text { Examples } & 2573.421736 \text { or } 2573,421736 \text { or } 0.2573421736 \times 10^{4} \text { or } \\
& 0,2573421736 \times 10^{4} \\
& 32573.4215 \text { or } 32573,4215 &
\end{array}
$$

2. Numerical values of physical quantities which have been experimentally determined are usually subject to some uncertainty. The experimental uncertainty should always be specified. The magnitude of the uncertainty may be represented as follows

$$
\begin{aligned}
\text { Examples } & l=[5.3478-0.0064,5.3478+0.0064] \mathrm{cm} \\
& l=5.3478(32) \mathrm{cm}
\end{aligned}
$$

In the first example the range of uncertainty is indicated directly as $[a-b, a+b]$. It is recommended that this notation should be used only with the meaning that the interval $[a-b, a+b]$ contains the true value with a high degree of certainty, such that $b \geqslant 2 \sigma$, where σ denotes the standard uncertainty or standard deviation (see Chapter 8, p. 149).
In the second example, $a(c)$, the range of uncertainty c indicated in parentheses is assumed to apply to the least significant digits of a. It is recommended that this notation be reserved for the meaning that b represents 1σ in the final digits of a.
3. Letter symbols for mathematical constants (e.g. e, $\pi, \mathrm{i}=\sqrt{-1}$) shall be printed in Roman (upright) type, but letter symbols for numbers other than constants (e.g. quantum numbers) should be printed in italic (sloping) type, similar to physical quantities.
4. Symbols for specific mathematical functions and operators (e.g. lb, ln, lg, exp, sin, cos, d, $\delta, \Delta, \nabla, \ldots$) shall be printed in Roman type, but symbols for a general function (e.g. $f(x)$, $F(x, y), \ldots)$ shall be printed in italic type.
5. The operator p (as in $\mathrm{p} a_{\mathrm{H}^{+}}, \mathrm{p} K=-\lg K$ etc., see Section 2.13 .1 (viii), p. 75) shall be printed in Roman type.
6. Symbols for symmetry species in group theory (e.g. S, P, D, ..., s, p, d, $\ldots, \Sigma, \Pi, \Delta, \ldots, \mathrm{A}_{1 \mathrm{~g}}$, $\mathrm{B}_{2}^{\prime \prime}, \ldots$) shall be printed in Roman (upright) type when they represent the state symbol for an atom or a molecule, although they are often printed in italic type when they represent the symmetry species of a point group.
7. Vectors and matrices shall be printed in bold italic type.

Examples force \boldsymbol{F}, electric field \boldsymbol{E}, position vector \boldsymbol{r}
Ordinary italic type is used to denote the magnitude of the corresponding vector.
Example $\quad r=|\boldsymbol{r}|$
Tensor quantities may be printed in bold face italic sans-serif type.

Examples S, T

Vectors may alternatively be characterized by an arrow, \vec{A}, \vec{a} and second-rank tensors by a double arrow, $\overrightarrow{\vec{S}}, \overrightarrow{\vec{T}}$.

4.2 SYMBOLS, OPERATORS, AND FUNCTIONS [5.k]

Description

Symbol

signs and symbols

equal to
not equal to
identically equal to
equal by definition to
approximately equal to
asymptotically equal to
corresponds to
proportional to
tends to, approaches
infinity
$=$
less than
greater than
less than or equal to
greater than or equal to
much less than
\neq
\equiv
$\stackrel{\text { def }}{=},:$
\approx
\simeq
$\hat{=}$
\sim, \propto
\rightarrow
∞
$<$
$>$
\leqslant
\geqslant
much greater than

operations

plus
minus
plus or minus
minus or plus
a multiplied by b
a divided by b
magnitude of a
a to the power n
square root of a, and of $a^{2}+b^{2}$
nth root of a
mean value of a
sign of a (equal to $a /|a|$ if $a \neq 0,0$ if $a=0$)
n factorial
binominal coefficient, $n!/ p!(n-p)$!
sum of a_{i}
product of a_{i}

functions

sine of x
$\sin x$
cosine of $x \quad \cos x$
tangent of x
$\tan x$
cotangent of x
(1) When multiplication is indicated by a dot, the dot shall be half high: $a \cdot b$.
(2) $a: b$ is as well used for "divided by". However, this symbol is mainly used to express ratios such as length scales in maps.

(3) These are the inverse of the parent function, i.e. $\arcsin x$ is the operator inverse of $\sin x$.
(4) For positive x.
(5) Notation used in thermodynamics, see Section 2.11, note 1, p. 56.
unit step function, Heaviside function
$\varepsilon(x), \mathrm{H}(x), \mathrm{h}(x)$,
$\varepsilon(x)=1$ for $x>0, \quad \varepsilon(x)=0$ for $x<0$.
gamma function
$\Gamma(x)=\int_{0}^{\infty} t^{x-1} \mathrm{e}^{-t} \mathrm{~d} t$
$\Gamma(n+1)=(n)$! for positive integers n
convolution of functions f and g
$f * g=\int_{-\infty}^{+\infty} f\left(x-x^{\prime}\right) g\left(x^{\prime}\right) \mathrm{d} x^{\prime}$

complex numbers

square root of $-1, \sqrt{-1}$
real part of $z=a+\mathrm{i} b$
i
imaginary part of $z=a+\mathrm{i} b$
$\operatorname{Re} z=a$
modulus of $z=a+\mathrm{i} b$,
absolute value of $z=a+\mathrm{i} b$
argument of $z=a+\mathrm{i} b$
complex conjugate of $z=a+\mathrm{i} b$

vectors

vector \boldsymbol{a}
cartesian components of \boldsymbol{a}
unit vectors in cartesian coordinate system
scalar product
vector or cross product
nabla operator, del operator
Laplacian operator
gradient of a scalar field V
divergence of a vector field \boldsymbol{A}
rotation of a vector field \boldsymbol{A}
$\operatorname{Im} z=b$
$|z|=\left(a^{2}+b^{2}\right)^{1 / 2}$
$\arg z ; \tan (\arg z)=b / a$
$z^{*}=a-\mathrm{i} b$
\boldsymbol{a}, \vec{a}
a_{x}, a_{y}, a_{z}
$\boldsymbol{e}_{x}, \boldsymbol{e}_{y}, \boldsymbol{e}_{z}$ or $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$
$a \cdot b$
$a \times b,(a \wedge b)$
$\boldsymbol{\nabla}=\boldsymbol{e}_{x} \partial / \partial x+\boldsymbol{e}_{y} \partial / \partial y+\boldsymbol{e}_{z} \partial / \partial z$
$\nabla^{2}, \triangle=\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}+\partial^{2} / \partial z^{2}$
grad $V, \nabla V$
$\operatorname{div} A, \nabla \cdot A$
$\operatorname{rot} A, \nabla \times A,(\operatorname{curl} A)$

matrices

matrix of element $A_{i j}$
product of matrices \boldsymbol{A} and \boldsymbol{B}
unit matrix
inverse of a square matrix \boldsymbol{A}
transpose of matrix \boldsymbol{A}
complex conjugate of matrix \boldsymbol{A}
conjugate transpose (adjoint) of \boldsymbol{A}
(hermitian conjugate of \boldsymbol{A})
trace of a square matrix \boldsymbol{A}
determinant of a square matrix \boldsymbol{A}

A

$\boldsymbol{A B}$, where $(\boldsymbol{A B})_{i k}=\sum_{j} A_{i j} B_{j k}$
$\boldsymbol{E}, \boldsymbol{I}$
\boldsymbol{A}^{-1}
$\boldsymbol{A}^{\top}, \widetilde{\boldsymbol{A}}$
A^{*}
$\boldsymbol{A}^{\mathrm{H}}, \boldsymbol{A}^{\dagger}$, where $\left(\boldsymbol{A}^{\dagger}\right)_{i j}=A_{j i}{ }^{*}$
$\sum_{i} A_{i i}, \operatorname{tr} \boldsymbol{A}$
$\operatorname{det} \boldsymbol{A},|\boldsymbol{A}|$

sets and logical operators

```
    p and q (conjunction sign)
p\wedgeq
    p or q or both (disjunction sign)
    negation of p, not p
    p implies q
p\veeq
\neg p
    p is equivalent to q
p=>q
p\Leftrightarrowq
```

Description	Symbol	Notes
A is contained in B	$A \subset B$	
union of A and B	$A \cup B$	
intersection of A and B	$A \cap B$	
x belongs to A	$x \in A$	
x does not belong to A	$x \notin A$	
the set A contains x	$A \ni x$	
A but not B	$A \backslash B$	

5 FUNDAMENTAL PHYSICAL CONSTANTS

The data given in this table are from the CODATA recommended values of the fundamental physical constants 2006 [23] (online at http://physics.nist.gov/constants) and from the 2006 compilation of the Particle Data Group [133] (online at http://pdg.lbl.gov), see notes for details. The standard deviation uncertainty in the least significant digits is given in parentheses.

(1) $\mathrm{H} \mathrm{m}^{-1}=\mathrm{NA}^{-2}=\mathrm{N}^{2} \mathrm{C}^{-2} ; \mathrm{F} \mathrm{m}^{-1}=\mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}$.
(2) ε_{0} and Z_{0} may be calculated exactly from the defined values of μ_{0} and c_{0}.
(3) The value of the Fermi coupling constant is recommended by the Particle Data Group [133].
(4) With the weak mixing angle $\theta_{\mathrm{W}}, \sin ^{2} \theta_{\mathrm{W}}$ is sometimes called Weinberg parameter. There are a number of schemes differing in the masses used to determine $\sin ^{2} \theta_{\mathrm{W}}$ (see Chapter 10 in [133]). The value given here for $\sin ^{2} \theta_{\mathrm{W}}[23]$ is based on the on-shell scheme which uses $\sin ^{2} \theta_{\mathrm{W}}=1-\left(m_{\mathrm{W}} / m_{\mathrm{Z}}\right)^{2}$, where the quantities m_{W} and m_{Z} are the masses of the $\mathrm{W}^{ \pm}$and Z^{0}-bosons, respectively.
(5) The Particle Data Group [133] gives $m_{\mathrm{W}}=80.403(29) \mathrm{GeV} / c_{0}{ }^{2}, m_{\mathrm{Z}}=91.1876(21) \mathrm{GeV} / c_{0}{ }^{2}$ and recommends $\sin ^{2} \theta_{\mathrm{W}}=0.23122(15)$, based on the $\overline{\mathrm{MS}}$ scheme. The corresponding value in

Quantity	Symbol	Value	Notes
proton magnetic moment	μ_{p}	$1.410606662(37) \times 10^{-26} \mathrm{~J} \mathrm{~T}^{-1}$	
proton gyromagnetic ratio	$\gamma_{\mathrm{p}}=4 \pi \mu_{\mathrm{p}} / h$	$2.675222099(70) \times 10^{8} \mathrm{~s}^{-1} \mathrm{~T}^{-1}$	
shielded proton magnetic moment $\left(\mathrm{H}_{2} \mathrm{O}\right.$, sphere, $\left.25^{\circ} \mathrm{C}\right)$	$\mu_{\mathrm{p}}^{\prime} / \mu_{\mathrm{B}}$	$1.520993128(17) \times 10^{-3}$	
shielded proton gyromagnetic ratio ($\mathrm{H}_{2} \mathrm{O}$, sphere, $25^{\circ} \mathrm{C}$)	$\gamma_{p}{ }^{\prime} / 2 \pi$	42.576388 1(12) MHz T ${ }^{-1}$	
Stefan-Boltzmann constant	$\sigma=2 \pi^{5} k^{4} / 15 h^{3} c_{0}{ }^{2}$	$5.670400(40) \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$	
first radiation constant	$c_{1}=2 \pi h c_{0}{ }^{2}$	$3.74177118(19) \times 10^{-16} \mathrm{~W} \mathrm{~m}^{2}$	
second radiation constant	$c_{2}=h c_{0} / k$	$1.4387752(25) \times 10^{-2} \mathrm{~m} \mathrm{~K}$	
Newtonian constant of gravitation	G	$6.67428(67) \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$	
standard acceleration of gravity	g_{n}	$9.80665 \mathrm{~m} \mathrm{~s}^{-2} \text { (defined) }$	

(5) (continued) the on-shell scheme is $\sin ^{2} \theta_{\mathrm{W}}=0.22306(33)$. The effective parameter also depends on the energy range or momentum transfer considered.
(6) u is the (unified) atomic mass unit (see Section 3.9, p. 94).
(7) See [134] and other papers in the same special issue of Metrologia on the precise measurement of the Avogadro constant.

Values of common mathematical constants

Mathematical constant	Symbol	Value	Notes
ratio of circumference to diameter of a circle	π	$3.14159265359 \cdots$	1
base of natural logarithms	e	$2.71828182846 \cdots$	
natural logarithm of 10	$\ln 10$	$2.30258509299 \cdots$	

(1) A mnemonic for π, based on the number of letters in words of the English language, is:
"How I like a drink, alcoholic of course, after the heavy lectures involving quantum mechanics!"
There are similar mnemonics in poem form in French:

> "Que j’aime à faire apprendre ce nombre utile aux sages!
> Immortel Archimède, artiste ingénieur,
> Qui de ton jugement peut priser la valeur?
> Pour moi, ton problème eut de pareils avantages."
and German:
"Wie? O! Dies π
Macht ernstlich so vielen viele Müh'!
Lernt immerhin, Jünglinge, leichte Verselein, Wie so zum Beispiel dies dürfte zu merken sein!"

See the Japanese [2.e] and Russian [2.c] editions for further mnemonics.

6 PROPERTIES OF PARTICLES, ELEMENTS, AND NUCLIDES

The symbols for particles, chemical elements, and nuclides have been discussed in Section 2.10.1 (ii), p. 50. The Particle Data Group [133] recommends the use of italic symbols for particles and this has been adopted by many physicists (see also Section 1.6, p. 7).

6.1 PROPERTIES OF SELECTED PARTICLES

The data given in this table are from the CODATA recommended values of the fundamental physical constants 2006 [23] (online at http://physics.nist.gov/constants) and from the 2006 compilation of the Particle Data Group (PDG) [133] (online at http://pdg.lbl.gov), see notes for details. The standard deviation uncertainty in the least significant digits is given in parentheses.

Charge

Name	Symbol	$\begin{aligned} & \text { Spin } \\ & I \end{aligned}$	number z	Mass		Notes
				m / u	$m c_{0}^{2} / \mathrm{MeV}$	
photon	γ	1	0	0	0	
neutrino	$v_{\text {e }}$	1/2	0	≈ 0	≈ 0	1,2
electron	e^{-}	$1 / 2$	-1	$5.4857990943(23) \times 10^{-4}$	0.510998 910(13)	3
muon	$\mu^{ \pm}$	$1 / 2$	± 1	$0.1134289264(30)$	105.658369 2(94)	2
pion	$\pi^{ \pm}$	0	± 1	$0.14983476(37)$	$139.57018(35)$	2
pion	π^{0}	0	0	$0.14490335(64)$	134.9766(6)	2
proton	p	1/2	1	$1.00727646677(10)$	$938.272013(23)$	
neutron	n	$1 / 2$	0	1.008664915 97(43)	939.565 346(23)	
deuteron	d	,	1	$2.013553212724(78)$	1875.612 793(47)	
triton	t	1/2	1	$3.0155007134(25)$	2808.920 906(70)	4
helion	h	$1 / 2$	2	3.0149322473 (26)	$2808.391383(70)$	4
α-particle		0	2	$4.001506179127(62)$	3727.379 109(93)	
Z-boson	Z^{0}	1	0	1	$91.1876(21) \times 10^{3}$	2, 5
W-boson	$\mathrm{W}^{ \pm}$	1	± 1		$80.403(29) \times 10^{3}$	2, 5

(1) The neutrino and antineutrino may perhaps have a small mass, $m_{\bar{v}_{\mathrm{e}}}<2 \mathrm{eV} / c_{0}^{2}$ [133]. In addition to the electron neutrino ν_{e} one finds also a tau neutrino, ν_{τ}, and a myon neutrino, ν_{μ} (and their antiparticles \bar{v}).
(2) These data are from the Particle Data Group [133].
(3) The electron is sometimes denoted by e or as a β-particle by β^{-}. Its anti particle e^{+}(positron, also β^{+}) has the same mass as the electron e^{-}but opposite charge and opposite magnetic moment.
(4) Triton is the ${ }^{3} \mathrm{H}^{+}$, and helion the ${ }^{3} \mathrm{He}^{2+}$ particle.
(5) Z^{0} and $\mathrm{W}^{ \pm}$are gauge bosons [133].

Name	Symbol	Magnetic moment μ / μ_{N}	Mean life ${ }^{1}$ τ / s	Notes

${ }^{1}$ The PDG [133] gives the mean life (τ) values, see also Section 2.12 , note 8, p. 64.
(6) The Particle Data Group [133] gives $\mu / \mu_{\mathrm{B}}<0.9 \times 10^{-10}$.
(7) The value of the magnetic moment is given in Bohr magnetons $\mu / \mu_{\mathrm{B}}, \mu_{\mathrm{B}}=e \hbar / 2 m_{\mathrm{e}}$.

In nuclear physics and chemistry the masses of particles are often quoted as their energy equivalents (usually in megaelectronvolts). The unified atomic mass unit corresponds to 931.494028 (23) MeV [23].

Atom-like pairs of a positive particle and an electron are sometimes sufficiently stable to be treated as individual entities with special names.

```
Examples
positronium ( }\mp@subsup{\textrm{e}}{}{+}\mp@subsup{\textrm{e}}{}{-};\textrm{Ps})\quadm(\textrm{Ps})=1.09715251521(46)\times1\mp@subsup{0}{}{-3}\textrm{u
muonium ( }\mp@subsup{\mu}{}{+}\mp@subsup{\textrm{e}}{}{-};\textrm{Mu})\quadm(\textrm{Mu})=0.1139774909(29) 
```

[^7]
6.2 STANDARD ATOMIC WEIGHTS OF THE ELEMENTS 2005

As agreed by the IUPAC Commission on Atomic Weights and Isotopic Abundances (CAWIA) in 1979 [135] the relative atomic mass (generally called atomic weight [136]) of an element, E, can be defined for any specified sample. It is the average mass of the atoms in the sample divided by the unified atomic mass unit ${ }^{1}$ or alternatively the molar mass of its atoms divided by the molar mass constant $M_{\mathrm{u}}=N_{\mathrm{A}} m_{\mathrm{u}}=1 \mathrm{~g} \mathrm{~mol}^{-1}$:

$$
A_{\mathrm{r}}(\mathrm{E})=\bar{m}_{\mathrm{a}}(\mathrm{E}) / \mathrm{u}=M(\mathrm{E}) / M_{\mathrm{u}}
$$

The variations in isotopic composition of many elements in samples of different origin limit the precision to which an atomic weight can be given. The standard atomic weights revised biennially by the CAWIA are meant to be applicable for normal materials. This means that to a high level of confidence the atomic weight of an element in any normal sample will be within the uncertainty limits of the tabulated value. By "normal" it is meant here that the material is a reasonably possible source of the element or its compounds in commerce for industry and science and that it has not been subject to significant modification of isotopic composition within a geologically brief period [137]. This, of course, excludes materials studied themselves for very anomalous isotopic composition. New statistical guidelines have been formulated and used to provide uncertainties on isotopic abundances in the isotopic composition of the elements 1997 [138].

Table 6.2 below lists the atomic weights of the elements 2005 [139] and the term symbol ${ }^{2 S+1} L_{J}$ for the atomic ground state [140] in the order of the atomic number. The atomic weights have been recommended by the IUPAC Commission on Isotopic Abundances and Atomic Weights (CIAAW) in 2005 [139] and apply to elements as they exist naturally on earth. An electronic version of the CIAAW Table of Standard Atomic Weights 2005 can be found on the CIAAW web page at http://www.ciaaw.org/atomic_weights4.htm. The list includes the approved names of elements 110 and 111 (Ds and Rg) [141,142]. The symbol Rg has also been used for "rare gas". For a history of recommended atomic weight values from 1882 to 1997, see [143].

The atomic weights of many elements depend on the origin and treatment of the materials [138]. The notes to this table explain the types of variation to be expected for individual elements. When used with due regard to the notes the values are considered reliable to \pm the figure given in parentheses being applicable to the last digit. For elements without a characteristic terrestrial isotopic composition no standard atomic weight is recommended. The atomic mass of its most stable isotope can be found in Section 6.3 below.

Symbol	Atomic number	Name	Atomic weight (Relative atomic mass)	Ground state term symbol	Note
H	1	hydrogen	1.007 94(7)	${ }^{2} \mathrm{~S}_{1 / 2}$	$\mathrm{g}, \mathrm{m}, \mathrm{r}$
He	2	helium	$4.002602(2)$	${ }^{1} \mathrm{~S}_{0}$	g, r
Li	3	lithium	$[6.941(2)]^{\dagger}$	${ }^{2} \mathrm{~S}_{1 / 2}$	$\mathrm{g}, \mathrm{m}, \mathrm{r}$
Be	4	beryllium	$9.012182(3)$	${ }^{1} \mathrm{~S}_{0}$	
B	5	boron	10.811(7)	${ }^{2} \mathrm{P}_{1 / 2}^{\mathrm{o}}$	$\mathrm{g}, \mathrm{m}, \mathrm{r}$
C	6	carbon	12.0107(8)	${ }^{3} \mathrm{P}_{0}$	g, r
N	7	nitrogen	14.0067(2)	${ }^{4} \mathrm{~S}_{3 / 2}^{\mathrm{o}}$	g, r
O	8	oxygen	15.9994(3)	${ }^{3} \mathrm{P}_{2}$	g, r
F	9	fluorine	$18.9984032(5)$	${ }^{2} \mathrm{P}_{3 / 2}^{\mathrm{o}}$	
Ne	10	neon	20.1797(6)	${ }^{1} \mathrm{~S}_{0}$	g, m
Na	11	sodium	22.989769 28(2)	${ }^{2} \mathrm{~S}_{1 / 2}$	
Mg	12	magnesium	24.3050(6)	${ }^{1} \mathrm{~S}_{0}$	

${ }^{1}$ Note that the atomic mass constant m_{u} is equal to the Dalton, Da , or the unified atomic mass unit, \mathbf{u}, and is defined in terms of the mass of the carbon-12 atom: $m_{u}=1 \mathrm{u}=1 \mathrm{Da}=m_{\mathrm{a}}\left({ }^{12} \mathrm{C}\right) / 12$.

Symbol	Atomic number	Name	Atomic weight (Relative atomic mass)	Ground state term symbol	Note
Al	13	aluminium (aluminum)	26.981538 6(8)	${ }^{2} \mathrm{P}_{1 / 2}^{\mathrm{o}}$	-
Si	14	silicon	$28.0855(3)$	${ }^{3} \mathrm{P}_{0}$	r
P	15	phosphorus	$30.973762(2)$	${ }^{4} \mathrm{~S}_{3 / 2}^{\mathrm{o}}$	
S	16	sulfur	32.065(5)	${ }^{3} \mathrm{P}_{2}$	g, r
Cl	17	chlorine	35.453(2)	${ }^{2} \mathrm{P}_{3 / 2}^{\text {o }}$	$\mathrm{g}, \mathrm{m}, \mathrm{r}$
Ar	18	argon	39.948(1)	${ }^{1} \mathrm{~S}_{0}$	g, r
K	19	potassium	39.0983(1)	${ }^{2} \mathrm{~S}_{1 / 2}$	
Ca	20	calcium	40.078(4)	${ }^{1} \mathrm{~S}_{0}$	g
Sc	21	scandium	44.955912 (6)	${ }^{2} \mathrm{D}_{3 / 2}$	
Ti	22	titanium	47.867(1)	${ }^{3} \mathrm{~F}_{2}$	
V	23	vanadium	$50.9415(1)$	${ }^{4} \mathrm{~F}_{3 / 2}$	
Cr	24	chromium	51.9961 (6)	${ }^{7} \mathrm{~S}_{3}$	
Mn	25	manganese	$54.938045(5)$	${ }^{6} \mathrm{~S}_{5 / 2}$	
Fe	26	iron	55.845 (2)	${ }^{5} \mathrm{D}_{4}$	
Co	27	cobalt	$58.933195(5)$	${ }^{4} \mathrm{~F}_{9 / 2}$	
Ni	28	nickel	58.6934(2)	${ }^{3} \mathrm{~F}_{4}$	
Cu	29	copper	63.546(3)	${ }^{2} \mathrm{~S}_{1 / 2}$	r
Zn	30	zinc	65.409(4)	${ }^{1} \mathrm{~S}_{0}$	
Ga	31	gallium	69.723(1)	${ }^{2} \mathrm{P}_{1 / 2}^{\mathrm{o}}$	
Ge	32	germanium	72.64 (1)	${ }^{3} \mathrm{P}_{0}$	
As	33	arsenic	$74.92160(2)$	${ }^{4} \mathrm{~S}_{3 / 2}^{\mathrm{o}}$	
Se	34	selenium	78.96 (3)	${ }^{3} \mathrm{P}_{2}$	r
Br	35	bromine	$79.904(1)$	${ }^{2} \mathrm{P}_{3 / 2}^{\mathrm{o}}$	
Kr	36	krypton	83.798(2)	${ }^{1} \mathrm{~S}_{0}$	g, m
Rb	37	rubidium	85.4678(3)	${ }^{2} \mathrm{~S}_{1 / 2}$	g
Sr	38	strontium	87.62(1)	${ }^{1} \mathrm{~S}_{0}$	g, r
Y	39	yttrium	$88.90585(2)$	${ }^{2} \mathrm{D}_{3 / 2}$	
Zr	40	zirconium	91.224(2)	${ }^{3} \mathrm{~F}_{2}$	g
Nb	41	niobium	$92.90638(2)$	${ }^{6} \mathrm{D}_{1 / 2}$	
Mo	42	molybdenum	95.94(2)	${ }^{7} \mathrm{~S}_{3}$	g
Tc	43	technetium		${ }^{6} \mathrm{~S}_{5 / 2}$	A
Ru	44	ruthenium	101.07(2)	${ }^{5} \mathrm{~F}_{5}$	g
Rh	45	rhodium	$102.90550(2)$	${ }^{4} \mathrm{~F}_{9 / 2}$	
Pd	46	palladium	106.42(1)	${ }^{1} \mathrm{~S}_{0}$	g
Ag	47	silver	107.8682(2)	${ }^{2} \mathrm{~S}_{1 / 2}$	g
Cd	48	cadmium	112.411(8)	${ }^{1} \mathrm{~S}_{0}$	g
In	49	indium	114.818(3)	${ }^{2} \mathrm{P}_{1 / 2}^{\text {o }}$	
Sn	50	tin	118.710(7)	${ }^{3} \mathrm{P}_{0}$	g
Sb	51	antimony	121.760(1)	${ }^{4} \mathrm{~S}_{3 / 2}^{\text {o }}$	g
Te	52	tellurium	127.60(3)	${ }^{3} \mathrm{P}_{2}$	g
I	53	iodine	126.904 47(3)	${ }^{2} \mathrm{P}_{3 / 2}^{\mathrm{o}}$	
Xe	54	xenon	131.293(6)	${ }^{1} \mathrm{~S}_{0}$	g, m
Cs	55	caesium (cesium)	$132.9054519(2)$	${ }^{2} \mathrm{~S}_{1 / 2}$	
Ba	56	barium	$137.327(7)$	${ }^{1} \mathrm{~S}_{0}$	
La	- 57	lanthanum	$138.90547(7)$	${ }^{2} \mathrm{D}_{3 / 2}$	g
Ce	58	cerium	140.116(1)	${ }^{1} \mathrm{G}_{4}^{\mathrm{o}}$	g

Symbol	Atomic number	Name	Atomic weight (Relative atomic mass)	Ground state term symbol	Note
Pr	59	praseodymium	140.907 65(2)	${ }^{4} \mathrm{I}_{9 / 2}^{\mathrm{o}}$	
Nd	60	neodymium	144.242(3)	${ }^{5} \mathrm{I}_{4}$	g
Pm	61	promethium		${ }^{6} \mathrm{H}_{5 / 2}^{\mathrm{o}}$	A
Sm	62	samarium	150.36(2)	${ }^{7} \mathrm{~F}_{0}$	g
Eu	63	europium	151.964(1)	${ }^{8} \mathrm{~S}_{7 / 2}^{0}$	g
Gd	64	gadolinium	157.25(3)	${ }^{9} \mathrm{D}_{2}^{\text {o }}$	g
Tb	65	terbium	$158.92535(2)$	${ }^{6} \mathrm{H}_{15 / 2}^{\mathrm{o}}$	
Dy	66	dysprosium	162.500(1)	${ }^{5} \mathrm{I}_{8}$	g
Ho	67	holmium	$164.93032(2)$	${ }^{4} \mathrm{I}_{15 / 2}^{\mathrm{o}}$	
Er	68	erbium	167.259(3)	${ }^{3} \mathrm{H}_{6}$	g
Tm	69	thulium	$168.93421(2)$	${ }^{2} \mathrm{~F}_{7 / 2}^{\mathrm{o}}$	
Yb	70	ytterbium	173.04(3)	${ }^{1} \mathrm{~S}_{0}$	g
Lu	71	lutetium	174.967(1)	${ }^{2} \mathrm{D}_{3 / 2}$	g
Hf	72	hafnium	178.49(2)	${ }^{3} \mathrm{~F}_{2}$	
Ta	73	tantalum	180.947 88(2)	${ }^{4} \mathrm{~F}_{3 / 2}$	
W	74	tungsten	183.84(1)	${ }^{5} \mathrm{D}_{0}$	
Re	75	rhenium	186.207(1)	${ }^{6} \mathrm{~S}_{5 / 2}$	
Os	76	osmium	190.23(3)	${ }^{5} \mathrm{D}_{4}$	g
Ir	77	iridium	$192.217(3)$	${ }^{4} \mathrm{~F}_{9 / 2}$	
Pt	78	platinum	195.084(9)	${ }^{3} \mathrm{D}_{3}$	
Au	79	gold	$196.966569(4)$	${ }^{2} \mathrm{~S}_{1 / 2}$	
Hg	80	mercury	200.59(2)	${ }^{1} \mathrm{~S}_{0}$	
Tl	81	thallium	204.3833(2)	${ }^{2} \mathrm{P}_{1 / 2}^{\mathrm{o}}$	
Pb	82	lead	207.2(1)	${ }^{3} \mathrm{P}_{0}$	g, r
Bi	83	bismuth	- 208.98040 (1)	${ }^{4} \mathrm{~S}_{3 / 2}^{\mathrm{o}}$	
Po	84	polonium)	${ }^{3} \mathrm{P}_{2}$	A
At	85	astatine		${ }^{2} \mathrm{P}_{3 / 2}^{\mathrm{o}}$	A
Rn	86	radon		${ }^{1} \mathrm{~S}_{0}$	A
Fr	87	francium		${ }^{2} \mathrm{~S}_{1 / 2}$	A
Ra	88	radium		${ }^{1} \mathrm{~S}_{0}$	A
Ac	89	actinium		${ }^{2} \mathrm{D}_{3 / 2}$	A
Th	90	thorium	232.038 06(2)	${ }^{3} \mathrm{~F}_{2}$	g, Z
Pa	91	protactinium	231.035 88(2)	${ }^{4} \mathrm{~K}_{11 / 2}$	Z
U	92	uranium	$238.02891(3)$	${ }^{5} \mathrm{~L}_{6}$	$\mathrm{g}, \mathrm{m}, \mathrm{Z}$
Np	93	neptunium		${ }^{6} \mathrm{~L}_{11 / 2}$	A
Pu	94	plutonium		${ }^{7} \mathrm{~F}_{0}$	A
Am	95	americium		${ }^{8} \mathrm{~S}_{7 / 2}^{\mathrm{o}}$	A
Cm	96	curium		${ }^{9} \mathrm{D}_{2}^{\text {o }}$	A
Bk	97	berkelium		${ }^{6} \mathrm{H}_{15 / 2}^{\mathrm{o}}$	A
Cf	98	californium		${ }^{5} \mathrm{I}_{8}$	A
Es	99	einsteinium		${ }^{4} \mathrm{I}_{15 / 2}^{\mathrm{o}}$	A
Fm	100	fermium		${ }^{3} \mathrm{H}_{6}$	A
Md	101	mendelevium		${ }^{2} \mathrm{~F}_{7 / 2}^{\mathrm{o}}$	A
No	102	nobelium		${ }^{1} \mathrm{~S}_{0}$	A

	Atomic Symbol	Atomic weight number	Name	Ground state
Lr	103	lawrencium		A
Rf	104	rutherfordium		A
Db	105	dubnium	A	
Sg	106	seaborgium	A	
Bh	107	bohrium	A	
Hs	108	hassium	A	
Mt	109	meitnerium	A	
Ds	110	darmstadtium	A	
Rg	111	roentgenium	A	

${ }^{\dagger}$ Commercially available Li materials have atomic weights that range between 6.939 and 6.996; if a more accurate value is required, it must be determined for the specific material.
(g) Geological specimens are known in which the element has an isotopic composition outside the limits for normal material. The difference between the atomic weight of the element in such specimens and that given in the table may exceed the stated uncertainty.
(m) Modified isotopic compositions may be found in commercially available material because it has been subjected to an undisclosed or inadvertent isotopic fractionation. Substantial deviations in atomic weight of the element from that given in the table can occur.
(r) Range in isotopic composition of normal terrestrial material prevents a more precise $A_{\mathrm{r}}(\mathrm{E})$ being given; the tabulated $A_{\mathrm{r}}(\mathrm{E})$ value and uncertainty should be applicable to normal material.
(A) Radioactive element without stable nuclide that lacks a characteristic terrestrial isotopic composition. In the IUPAC Periodic Table of the Elements on the inside back cover, a value in brackets indicates the mass number of the longest-lived isotope of the element (see also the table of nuclide masses, Section 6.3).
(Z) An element without stable nuclide(s), exhibiting a range of characteristic terrestrial compositions of long-lived radionuclide(s) such that a meaningful atomic weight can be given.

6.3 PROPERTIES OF NUCLIDES

The table contains the following properties of naturally occurring and some unstable nuclides:

Column

$1 \quad Z$ is the atomic number (number of protons) of the nuclide.
2 Symbol of the element.
$3 \quad A$ is the mass number of the nuclide. The asterisk * denotes an unstable nuclide (for elements without naturally occurring isotopes it is the most stable nuclide) and the \# sign a nuclide of sufficiently long lifetime (greater than 10^{5} years) [144] to enable the determination of its isotopic abundance.

4 The atomic mass is given in unified atomic mass units, $1 \mathrm{u}=m_{\mathrm{a}}\left({ }^{12} \mathrm{C}\right) / 12$, together with the standard errors in parentheses and applicable to the last digits quoted. The data were extracted from a more extensive list of the Ame2003 atomic mass evaluation [145, 146].

5 Representative isotopic compositions are given as amount-of-substance fractions (mole fractions), x, of the corresponding atoms in percents. According to the opinion of CAWIA, they represent the isotopic composition of chemicals or materials most commonly encountered in the laboratory. They may not, therefore, correspond to the most abundant natural material [138]. It must be stressed that those values should be used to determine the average properties of chemicals or materials of unspecified natural terrestrial origin, though no actual sample having the exact composition listed may be available. The values listed here are from the 2001 CAWIA review as given in column 9 of ref. [147] as representative isotopic composition. This reference uses the Atomic Mass Evaluation 1993 [148, 149]. There is an inconsistency in this Table because column 4 uses the most recent masses Ame2003 [145,146], whereas column 5 is based on previous atomic masses $[148,149]$. When precise work is to be undertaken, such as assessment of individual properties, samples with more precisely known isotopic abundances (such as listed in column 8 of ref. [147]) should be obtained or suitable measurements should be made. The uncertainties given in parentheses are applicable to the last digits quoted and cover the range of probable variations in the materials as well as experimental errors. For additional data and background information on ranges of isotope-abundance variations in natural and anthropogenic material, see [149, 150].
$6 \quad I$ is the nuclear spin quantum number. A plus sign indicates positive parity and a minus sign indicates negative parity. Parentheses denotes uncertain values; all values have been taken from the Nubase evaluation [144].
$7 \quad$ Under magnetic moment the maximum z-component expectation value of the magnetic dipole moment, m, in nuclear magnetons is given. The positive or negative sign implies that the orientation of the magnetic dipole with respect to the angular momentum corresponds to the rotation of a positive or negative charge, respectively. The data were extracted from the compilation by N. J. Stone [151]. An asterisk * indicates that more than one value is given in the original compilation; ${ }^{* *}$ indicates that an older value exists with a higher stated precision. The absence of a plus or minus sign means that the sign has not been determined by the experimenter.

8 Under quadrupole moment, the electric quadrupole moment area (see Section 2.5, notes 14 and 15 on p. 23 and 24) is given in units of square femtometres, $1 \mathrm{fm}^{2}=10^{-30} \mathrm{~m}^{2}$, although most of the tables quote them in barn (b), $1 \mathrm{~b}=10^{-28}$ $\mathrm{m}^{2}=100 \mathrm{fm}^{2}$. The positive sign implies a prolate nucleus, the negative sign an oblate nucleus. The data are taken from N. J. Stone [151]. An asterisk * indicates that more than one value is given in the original compilation; ${ }^{* *}$ indicates that an older value exists with a higher stated precision. The absence of a plus or minus sign means that the sign has not been determined by the experimenter.

Z	Symbol	A	Atomic mass, $m_{\mathrm{a}} / \mathrm{u}$	Isotopic composition, $100 x$	Nuclear spin, I	Magnetic moment, m / μ_{N}	Quadrupole moment, Q / fm^{2}
20	Ca	40	$39.96259098(22)$	96.941(156)	$0+$	0	
		42	$41.95861801(27)$	0.647(23)	$0+$	0	
		43	42.958766 6(3)	0.135(10)	7/2-	-1.317 643(7)*	$-5.5(1)^{* *}$
		44	43.9554818 (4)	2.086(110)	$0+$	0	
		46	45.9536926 (24)	0.004(3)	$0+$	0	
		48\#	47.952 534(4)	0.187(21)	$0+$	0	
21	Sc	45	$44.9559119(9)$	100	7/2-	+4.756 487(2)	-15.6(3)*
22	Ti	46	45.9526316 (9)	8.25(3)	$0+$	0	
		47	46.9517631 (9)	7.44(2)	$5 / 2-$	-0.788 48(1)	+30.0 (20)*
		48	47.9479463 (9)	73.72(3)	$0+$		
		49	48.947870 0(9)	5.41(2)	7/2-	-1.104 17(1)	$24.7(11)^{*}$
		50	$49.9447912(9)$	5.18(2)	$0+$	0	
23	V	50\#	$49.9471585(11)$	0.250(4)	$6+$	$+3.3456889(14)$	21.0(40)*
		51	$50.9439595(11)$	99.750(4)	7/2-	+5.1487057(2)	$-4.3(5)^{*}$
24	Cr	50	$49.9460442(11)$	$4.345(13)$	$0+$	0	
		52	$51.9405075(8)$	83.789(18)	$0+$	0	
		53	$52.9406494(8)$	9.501(17)	$3 / 2$	-0.474 54(3)	$-15.0(50)^{*}$
		54	$53.9388804(8)$	$2.365(7)$		0	
25	Mn	55	$54.9380451(7)$	100	$5 / 2-$	+3.468717 90(9)	$+33.0(10)^{*}$
26	Fe	54	$53.9396105(7)$	5.845(35)	$0+$	0	
		56	$55.9349375(7)$	91.754(36)	0+	0	
		57	56.9353940 (7)	2.119(10)	1/2-	+0.090623 00(9)*	
		58	57.9332756 (8)	0.282(4)	$0+$	0	
27	Co	59	$58.9331950(7)$	100	7/2-	+4.627(9)	$+41.0(10)^{*}$
28	Ni	58	$57.9353429(7)$	68.0769(89)		0	
		60	$59.9307864(7)$	26.2231(77)	$0+$	0	
		61	$60.9310560(7)$	1.1399 (6)	3/2-	-0.750 02(4)	+16.2(15)
		62	$61.9283451(6)$	3.6345(17)	$0+$	0	
		64	$63.9279660(7)$	0.9256(9)	$0+$	0	
29	Cu	63	$62.9295975(6)$	69.15(15)	$3 / 2-$	$2.2273456(14)^{*}$	$-21.1(4)^{*}$
		65	$64.9277895(7)$	30.85(15)	$3 / 2-$	$2.38161(19)^{*}$	-19.5(4)
30	Zn	64	$63.9291422(7)$	48.268(321)	$0+$	0	
		66	65.926033 4(10)	27.975(77)	$0+$	0	
		67	66.9271273 (10)	4.102(21)	5/2-	$+0.8752049(11)^{*}$	+15.0(15)
		68	$67.9248442(10)$	19.024(123)	$0+$	0	
		70	$69.9253193(21)$	0.631(9)	$0+$	0	
31	Ga	69	$68.9255736(13)$	60.108(9)	$3 / 2-$	+2.016 59(5)	$+16.50(8)^{*}$
		71	70.9247013 (11)	39.892(9)	$3 / 2-$	+2.562 27(2)	$+10.40(8) *$
32	Ge	70	69.9242474 (11)	20.38(18)	$0+$	0	
		72	71.922075 8(18)	27.31(26)	$0+$	0	
		73	$72.9234589(18)$	7.76(8)	9/2+	-0.879 467 7(2)	-17.0(30)
		74	73.921177 8(18)	36.72(15)	$0+$	0	
		76\#	75.9214026 (18)	7.83(7)	$0+$	0	
33	As	75	$74.9215965(20)$	100	$3 / 2-$	+1.439 48(7)	$+30.0(50)^{* *}$

Z	Symbol	A	Atomic mass, $m_{\mathrm{a}} / \mathrm{u}$	Isotopic composition, $100 x$	Nuclear spin, I	Magnetic moment, m / μ_{N}	Quadrupole moment, Q / fm^{2}
34	Se	74	$73.9224764(18)$	0.89(4)	0+	0	
		76	75.919213 6(18)	9.37 (29)	$0+$	0	
		77	76.919914 0(18)	7.63(16)	1/2-	+0.535042 2(6)*	
		78	77.917309 1(18)	23.77(28)	$0+$	0	
		80	$79.9165213(21)$	49.61(41)	$0+$	0	
		82\#	$81.9166994(22)$	8.73(22)	$0+$	0	
35	Br	79	78.9183371 (22)	50.69(7)	$3 / 2-$	+2.106 400(4)	31.8(5)**
		81	$80.9162906(21)$	49.31(7)	$3 / 2-$	+2.270 562(4)	$+26.6(4)^{* *}$
36	Kr	78	77.920364 8(12)	$0.355(3)$	$0+$	0	
		80	79.9163790 (16)	2.286(10)	$0+$	0	
		82	81.913483 6(19)	11.593(31)	$0+$	0	
		83	82.914 136(3)	11.500(19)	$9 / 2+$	-0.970 669(3)	$+25.9(1)^{*}$
		84	83.911 507(3)	56.987(15)	$0+$		
		86	$85.91061073(11)$	17.279(41)	$0+$	0	
37	Rb	85	$84.911789738(12)$	72.17(2)	$5 / 2-$	+1.352 98(10)**	$+27.7(1)^{* *}$
		87\#	86.909180 527(13)	27.83(2)	$3 / 2-$	$+2.75131(12)^{* *}$	$+13.4(1)^{*}$
38	Sr	84	$83.913425(3)$	0.56(1)	$0+$	0	
		86	$85.9092602(12)$	9.86(1)	$0+$	0	
		87	86.908877 1(12)	7.00(1)	$9 / 2+$	-1.093 $6030(13)^{*}$	$+33.0(20)^{*}$
		88	$87.9056121(12)$	82.58(1)	$0+$	0	
39	Y	89	$88.9058483(27)$	100	$1 / 2-$	$-0.1374154(3)^{*}$	
40	Zr	90	$89.9047044(25)$	51.45(40)	0	0	
		91	90.9056458 8(25)	11.22 (5)	$5 / 2+$	-1.303 62(2)	$-17.6(3)^{*}$
		92	$91.9050408(25)$	$17.15(8)$	$0+$	0	
		94	$93.9063152(26)$	17.38(28)	$0+$	0	
		96\#	95.9082734 (30)	2.80(9)	$0+$	0	
41	Nb	93	$92.9063781(26)$	100	9/2+	+6.1705(3)	$-37.0(20)^{*}$
42	Mo	92	91.906 811(4)	14.77(31)	$0+$	0	
		94	93.9050883 (21)	9.23 (10)	$0+$	0	
		95	94.9058421 1(21)	15.90(9)	$5 / 2+$	-0.9142(1)	$-2.2(1)^{*}$
		96	$95.9046795(21)$	16.68(1)	$0+$		
		97	$96.9060215(21)$	$9.56(5)$	$5 / 2+$	-0.9335(1)	$+25.5(13)^{*}$
		98	$97.9054082(21)$	24.19(26)	$0+$	0	
		100\#	$99.907477(6)$	$9.67(20)$	$0+$	0	
43	Tc	98*	97.907 216(4)		(6) +		
44	Ru	96	$95.907598(8)$	5.54(14)	$0+$	0	
		98	97.905 287(7)	1.87(3)	$0+$	0	
		99	98.9059393 (22)	12.76(14)	$5 / 2+$	-0.641(5)	+7.9(4)
		100	$99.9042195(22)$	12.60(7)	$0+$		
		101	$100.9055821(22)$	17.06(2)	$5 / 2+$	$-0.719(6)^{*}$	+46.0(20)
		102	101.9043493 3(22)	31.55(14)	$0+$	0	
		104	$103.905433(3)$	18.62(27)	$0+$	0	
45	Rh	103	102.905 504(3)	100	1/2-	-0.8840(2)	
46	Pd	102	101.905 609(3)	1.02(1)	$0+$	0	
		104	103.904 036(4)	11.14(8)	$0+$	0	
		105	$104.905085(4)$	22.33 (8)	$5 / 2+$	-0.642(3)	$+65.0(30)^{* *}$
		106	105.903 486(4)	27.33(3)	$0+$	0	
		108	107.903 892(4)	26.46(9)	$0+$	0	
		110	$109.905153(12)$	11.72(9)	$0+$	0	

Z	Symbol	A	Atomic mass, $m_{\mathrm{a}} / \mathrm{u}$	Isotopic composition, $100 x$	Nuclear spin, I	Magnetic moment, m / μ_{N}	Quadrupole moment, Q / fm^{2}
47	Ag	107	106.905 097(5)	51.839(8)	1/2-	$-0.11367965(15)^{*}$	
		109	$108.904752(3)$	48.161(8)	1/2-	$-0.1306906(2)^{*}$	
48	Cd	106	$105.906459(6)$	1.25 (6)	$0+$	0	
		108	$107.904184(6)$	0.89(3)	$0+$	0	
		110	109.903002 1(29)	12.49(18)	$0+$	0	
		111	110.9041781 (29)	12.80(12)	1/2+	-0.594 $8861(8)^{*}$	
		112	111.9027578 (29)	24.13(21)	$0+$	0	
		113\#	$112.9044017(29)$	12.22(12)	$1 / 2+$	-0.622 3009 9(9)	
		114	$113.9033585(29)$	28.73(42)	$0+$		
		116\#	$115.904756(3)$	7.49(18)	$0+$	0	
49	In	113	$112.904058(3)$	4.29(5)	$9 / 2+$	$+5.5289(2)$	+80.0(40)
		115\#	114.903 878(5)	95.71(5)	$9 / 2+$	+5.5408(2)	$+81.0(50)^{*}$
50	Sn	112	111.904 818(5)	0.97(1)	$0+$	0	
		114	$113.902779(3)$	0.66(1)	0+	0	
		115	114.903 342(3)	0.34(1)	$1 / 2+$	-0.918 83(7)	
		116	115.901 741(3)	14.54(9)	$0+$		
		117	116.902 952(3)	7.68(7)	1/2+	-1.001 04(7)	
		118	$117.901603(3)$	24.22(9)			
		119	118.903 308(3)	8.59(4)	$1 / 2+$	-1.047 28(7)	
		120	119.9021947 (27)	32.58(9)	$0+$	0	
		122	$121.9034390(29)$	4.63(3)	$0+$	0	
		124	$123.9052739(15)$	5.79(5)		0	
51	Sb	121	$120.9038157(24)$	57.21(5)	$5 / 2+$	+3.3634(3)	$-36.0(40)^{* *}$
		123	$122.9042140(22)$	42.79(5)	$7 / 2+$	+2.5498(2)	-49.0(50)
52	Te	120	119.904 020(10)	0.09(1)	$0+$	0	
		122	121.903043 9(16)	2.55(12)	0+	0	
		123\#	122.904270 0(16)	0.89(3)	$1 / 2+$	-0.736 947 8(8)	
		124	$123.9028179(16)$	$4.74(14)$	$0+$	0	
		125	$124.9044307(16)$	$7.07(15)$	$1 / 2+$	$-0.8884509(10)^{*}$	
		126	$125.9033117(16)$	18.84(25)	$0+$	0	
		128\#	127.904463 1(19)	31.74(8)	$0+$	0	
		130\#	$129.9062244(21)$	34.08(62)	$0+$	0	
53	I	127	126.904 473(4)	100	$5 / 2+$	+2.813 27(8)	$72.0(20)^{* *}$
54	Xe	124	$123.9058930(20)$	0.0952(3)	$0+$	0	
		126	125.904 274(7)	0.0890(2)	$0+$	0	
		128	$127.9035313(15)$	1.9102(8)	$0+$	0	
		129	$128.9047794(8)$	26.4006(82)	$1 / 2+$	-0.777 976(8)	
		130	129.9035080 (8)	4.0710(13)	$0+$	0	
		131	$130.9050824(10)$	21.2324(30)	$3 / 2+$	$+0.6915(2)^{* *}$	$-11.4(1)^{*}$
		132	$131.9041535(10)$	26.9086(33)	$0+$	0	
		134	$133.9053945(9)$	10.4357(21)	$0+$	0	
		136	$135.907219(8)$	8.8573(44)	$0+$	0	
55	Cs	133	$132.905451933(24)$	100	7/2+	$+2.582025(3)^{* *}$	$-0.355(4)^{*}$
56	Ba	130	$129.906320(8)$	0.106(1)	$0+$	0	
		132	131.905 061(3)	0.101(1)	$0+$	0	
		134	$133.9045084(4)$	2.417(18)	$0+$	0	
		135	$134.9056886(4)$	$6.592(12)$	$3 / 2+$	$0.838627(2)^{*}$	$+16.0(3){ }^{*}$
		136	$135.9045759(4)$	7.854(24)	$0+$	0	
		137	$136.9058274(5)$	11.232(24)	$3 / 2+$	$0.93734(2)^{*}$	$+24.5(4)^{*}$
		138	$137.9052472(5)$	71.698(42)	$0+$	0	

Z	Symbol	A	Atomic mass, $m_{\mathrm{a}} / \mathrm{u}$	Isotopic composition, $100 x$	Nuclear spin, I	Magnetic moment, m / μ_{N}	Quadrupole moment, Q / fm^{2}
57	La	138\#	$137.907112(4)$	0.090(1)	$5+$	+3.713 646(7)	$\begin{aligned} & +45.0(20)^{*} \\ & +20.0(10) \end{aligned}$
		139	$138.9063533(26)$	99.910(1)	7/2+	$+2.7830455(9)$	
58	Ce	136	$135.907172(14)$	0.185(2)	$0+$	0	
		138	137.905 991(11)	0.251(2)	$0+$	0	
		140	$139.9054387(26)$	88.450(51)	$0+$	0	
		142	141.909 244(3)	11.114(51)	$0+$	0	
59	Pr	141	$140.9076528(26)$	100	$5 / 2+$	$+4.2754(5)$	$-7.7(6)^{*}$
60	Nd	142	$141.9077233(25)$	27.2(5)	$0+$		
		143	$142.9098143(25)$	12.2(2)	7/2-	-1.065(5)	$-61.0(20)^{*}$
		144\#	$143.9100873(25)$	23.8(3)	$0+$		
		145	$144.9125736(25)$	8.3(1)	7/2-	-0.656(4)	$-31.4(12)^{* *}$
		146	$145.9131169(25)$	17.2(3)	$0+$		
		148	147.916 893(3)	5.7(1)	$0+$		
		150\#	149.920 891(3)	5.6(2)	0+	0	
61	Pm	145*	144.912 749(3)		$5 / 2+$		
62	Sm	144	143.911 999(3)	3.07(7)	$0+$		
		147\#	$146.9148979(26)$	14.99(18)	7/2-	$-0.812(2)^{* *}$	-26.1(7)*
		148\#	$147.9148227(26)$	11.24(10)	$0+$	0	
		149	$148.9171847(26)$	13.82(7)	7/2-	$-0.6677(11)^{* *}$	$+7.5(2)^{*}$
		150	$149.9172755(26)$	7.38(1)	$0+$	0	
		152	$151.9197324(27)$	26.75(16)	$0+$	0	
		154	$153.9222093(27)$	22.75(29)	$0+$	0	
63	Eu	151	$150.9198502(26)$	47.81(6)	$5 / 2+$	+3.4717 (6)	$\begin{aligned} & 83.0^{* *} \\ & +222.0^{*} \end{aligned}$
		153	$152.9212303(26)$	52.19(6)	$5 / 2+$	$+1.5324(3)^{*}$	
64	Gd	152\#	$151.9197910(27)$	0.20(1)	$0+$	0	
		154	$153.9208656(27)$	2.18(3)	$0+$	0	
		155	$154.9226220(27)$	14.80(12)	$3 / 2-$	-0.2572(4)*	+127.0(50)*
		156	$155.9221227(27)$	20.47(9)	$0+$	0	
		157	156.9239601 (27)	15.65(2)	$3 / 2-$	$-0.3373(6)^{*}$	$+136.0(60)^{* *}$
		158	$157.9241039(27)$	24.84(7)	$0+$	0	
		160	$159.9270541(27)$	21.86(19)	$0+$	0	
65	Tb	159	$158.9253468(27)$	100	$3 / 2+$	+2.014(4)	+143.2(8)
66	Dy	156	155.924 283(7)	0.056(3)	$0+$	0	
		158	157.924 409(4)	0.095 (3)	$0+$	0	
		160	$159.9251975(27)$	2.329(18)	$0+$	0	
		161	160.926933 4(27)	18.889(42)	$5 / 2+$	$-0.480(3)^{*}$	247.7(30)**
		162	$161.9267984(27)$	25.475(36)	$0+$	0	
		163	$162.9287312(27)$	24.896(42)	5/2-	+0.673(4)	$+265.0(20)^{* *}$
		164	$163.9291748(27)$	28.260(54)	$0+$	0	
67	Ho	165	$164.9303221(27)$	100	7/2-	+4.17(3)	$358.0(20)^{* *}$
68	Er	162	161.928 778(4)	0.139(5)	$0+$	0	
		164	163.929 200(3)	1.601(3)	$0+$	0	
		166	165.9302931 (27)	33.503(36)	$0+$	0	
		167	166.932048 2(27)	22.869(9)	7/2+	-0.563 85(12)	$+357.0(3)^{* *}$
		168	$167.9323702(27)$	26.978(18)	$0+$	0	
		170	169.9354643 (30)	14.910(36)	$0+$	0	
69	Tm	169	$168.9342133(27)$	100	$1 / 2+$	$-0.2310(15)^{*}$	

Z	Symbol	A	Atomic mass, $m_{\mathrm{a}} / \mathrm{u}$	Isotopic composition, $100 x$	Nuclear spin, I	Magnetic moment, m / μ_{N}	Quadrupole moment, Q / fm^{2}
70	Yb	168	167.933 897(5)	0.13(1)	$0+$	0	
		170	$169.9347618(26)$	3.04(15)	$0+$	0	
		171	$170.9363258(26)$	14.28(57)	1/2-	+0.493 67(1)*	
		172	$171.9363815(26)$	21.83(67)	$0+$	0	
		173	$172.9382108(26)$	16.13(27)	5/2-	$-0.648(3)^{* *}$	+280.0 (40)
		174	173.938862 1(26)	31.83(92)	$0+$	0	
		176	$175.9425717(28)$	12.76(41)	$0+$	0	
71	Lu	175	174.9407718 (23)	97.41(2)	7/2+	$+2.2323(11)^{* *}$	$+349.0(20)^{*}$
		176\#	$175.9426863(23)$	2.59(2)	$7-$	$+3.162(12)^{* *}$	+492.0(50)*
72	Hf	174\#	173.940 046(3)	0.16(1)	$0+$	0	
		176	$175.9414086(24)$	5.26(7)	0+		
		177	$176.9432207(23)$	18.60(9)	7/2-	$+0.7935(6)$	$+337.0(30)^{*}$
		178	177.943698 8(23)	27.28(7)	$0+$		
		179	$178.9458161(23)$	13.62(2)	9/2+	-0.6409(13)	$+379.0(30)^{*}$
		180	$179.9465500(23)$	35.08(16)	$0+$	0	
73	Ta	180	$179.9474648(24)$	0.012(2)	9-		
		181	180.947995 8(19)	99.988(2)	7/2+	+2.3705(7)	$+317.0(20)^{*}$
74	W	180	179.946 704(4)	0.12(1)	$0+$	0	
		182	181.9482042 (9)	26.50(16)	$0+$		
		183	182.9502230 (9)	14.31(4)	1/2-	+0.117 $78476(9)$	
		184	$183.9509312(9)$	30.64(2)	$0+$	0	
		186	185.954364 1(19)	28.43(19)	0	0	
75	Re	185	184.9529550 (13)	37.40(2)	$5 / 2+$	$+3.1871(3)$	+218.0(20)*
		187\#	$186.9557531(15)$	62.60(2)	$5 / 2+$	$+3.2197(3)$	$+207.0(20)^{*}$
76	Os	184	183.9524891 (14)	0.02(1)	$0+$	0	
		186\#	185.953838 2(15)	1.59(3)	$0+$	0	
		187	$186.9557505(15)$	1.96(2)	1/2-	$+0.06465189(6)^{*}$	
		188	187.955838 2(15)	13.24(8)	$0+$	0	
		189	188.9581475 (16)	16.15(5)	3/2-	+0.659 933(4)	$+98.0(60)^{* *}$
		190	189.9584470 0(16)	26.26(2)	$0+$	0	
		192	$191.9614807(27)$	40.78(19)	$0+$	0	
77	Ir	191	$190.9605940(18)$	37.3(2)	$3 / 2+$	$+0.1507(6)^{*}$	$+81.6(9) *$
		193	$192.9629264(18)$	62.7(2)	$3 / 2+$	$+0.1637(6)^{*}$	$+75.1(9)^{*}$
78	Pt	190\#	189.959 932(6)	0.014(1)	$0+$	0	
		192	$191.9610380(27)$	0.782(7)	$0+$	0	
		194	$193.9626803(9)$	32.967 (99)	$0+$	0	
		195	$194.9647911(9)$	33.832(10)	1/2-	+0.609 52(6)	
		196	$195.9649515(9)$	25.242(41)	$0+$	0	
		198	197.967 893(3)	7.163(55)	$0+$	0	
79	Au	197	$196.9665687(6)$	100	$3 / 2+$	$+0.145746(9)^{* *}$	$+54.7(16)^{* *}$
80	Hg	196	$195.965833(3)$	0.15(1)	$0+$	0	
		198	$197.9667690(4)$	9.97(20)	$0+$	0	
		199	198.968279 9(4)	16.87(22)	1/2-	$+0.5058855(9)$	
		200	$199.9683260(4)$	23.10(19)	$0+$	0	
		201	200.9703023 (6)	13.18(9)	3/2-	$-0.5602257(14)^{*}$	$+38.0(40)^{*}$
		202	201.970643 0(6)	29.86(26)	$0+$	0	
		204	$203.9734939(4)$	6.87(15)	$0+$	0	
81	Tl	203	$202.9723442(14)$	29.52(1)	$1 / 2+$	$+1.62225787(12)^{*}$	
		205	$204.9744275(14)$	70.48(1)	$1 / 2+$	+1.638 214 61(12)	
82	Pb	204	$203.9730436(13)$	1.4(1)	$0+$	0	
		206	205.9744653 (13)	24.1(1)	0+	0	
		207	206.9758969 (13)	22.1(1)	1/2-	+0.592 583(9)*	
		208	$207.9766521(13)$	52.4(1)	$0+$	0	

7 CONVERSION OF UNITS

Units of the SI are recommended for use throughout science and technology. However, some nonrationalized units are in use, and in a few cases they are likely to remain so for many years. Moreover, the published literature of science makes widespread use of non-SI units. It is thus often necessary to convert the values of physical quantities between SI units and other units. This chapter is concerned with facilitating this process, as well as the conversion of units in general.

Section 7.1, p. 131 gives examples illustrating the use of quantity calculus for converting the numerical values of physical quantities expressed in different units. The table in Section 7.2, p. 135 lists a variety of non-rationalized units used in chemistry, with the conversion factors to the corresponding SI units. Transformation factors for energy and energy-related units (repetency, wavenumber, frequency, temperature and molar energy), and for pressure units, are also presented in tables in the back of this manual.

Many of the difficulties in converting units between different systems are associated either with the electromagnetic units, or with atomic units and their relation to the electromagnetic units. In Sections 7.3 and 7.4, p. 143 and 146 the relations involving electromagnetic and atomic units are developed in greater detail to provide a background for the conversion factors presented in the table in Section 7.2, p. 135.

7.1 THE USE OF QUANTITY CALCULUS

Quantity calculus is a system of algebra in which symbols are consistently used to represent physical quantities and not their numerical values expressed in certain units. Thus we always take the values of physical quantities to be the product of a numerical value and a unit (see Section 1.1, p. 3), and we manipulate the symbols for physical quantities, numerical values, and units by the ordinary rules of algebra (see footnote ${ }^{1}$, below). This system is recommended for general use in science and technology. Quantity calculus has particular advantages in facilitating the problems of converting between different units and different systems of units. Another important advantage of quantity calculus is that equations between quantities are independent of the choice of units, and must always satisfy the rule that the dimensions must be the same for each term on either side of the equal sign. These advantages are illustrated in the examples below, where the numerical values are approximate.

Example 1. The wavelength λ of one of the yellow lines of sodium is given by

$$
\lambda \approx 5.896 \times 10^{-7} \mathrm{~m}, \quad \text { or } \quad \lambda / \mathrm{m} \approx 5.896 \times 10^{-7}
$$

The ångström is defined by the equation (see Section 7.2, "length", p. 135)

$$
1 \AA=\AA:=10^{-10} \mathrm{~m}, \quad \text { or } \mathrm{m} / \AA:=10^{10}
$$

Substituting in the first equation gives the value of λ in ångström

$$
\lambda / \AA=(\lambda / \mathrm{m})(\mathrm{m} / \AA) \approx\left(5.896 \times 10^{-7}\right)\left(10^{10}\right)=5896
$$

or

$$
\lambda \approx 5896 \AA
$$

Example 2. The vapor pressure of water at $20^{\circ} \mathrm{C}$ is recorded to be

$$
p\left(\mathrm{H}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}\right) \approx 17.5 \text { Torr }
$$

The torr, the bar, and the atmosphere are given by the equations (see Section 7.2, "pressure", p. 138)

$$
\begin{aligned}
& 1 \text { Torr } \approx 133.3 \mathrm{~Pa} \\
& 1 \mathrm{bar}:=10^{5} \mathrm{~Pa} \\
& 1 \mathrm{~atm}:=101325 \mathrm{~Pa}
\end{aligned}
$$

Thus

$$
\begin{aligned}
p\left(\mathrm{H}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}\right) \approx & 17.5 \times 133.3 \mathrm{~Pa} \approx 2.33 \mathrm{kPa}= \\
& \left(2.33 \times 10^{3} / 10^{5}\right) \mathrm{bar}=23.3 \mathrm{mbar}= \\
& \left(2.33 \times 10^{3} / 101325\right) \mathrm{atm} \approx 2.30 \times 10^{-2} \mathrm{~atm}
\end{aligned}
$$

Example 3. Spectroscopic measurements show that for the methylene radical, CH_{2}, the $\widetilde{\mathrm{a}}^{1} \mathrm{~A}_{1}$ excited state lies at a repetency (wavenumber) $3156 \mathrm{~cm}^{-1}$ above the $\widetilde{\mathrm{X}}^{3} \mathrm{~B}_{1}$ ground state

$$
\widetilde{\nu}(\widetilde{\mathrm{a}}-\widetilde{\mathrm{X}})=T_{0}(\widetilde{\mathrm{a}})-T_{0}(\widetilde{\mathrm{X}}) \approx 3156 \mathrm{~cm}^{-1}
$$

The excitation energy from the ground triplet state to the excited singlet state is thus

$$
\begin{aligned}
\Delta E= & h c_{0} \widetilde{\nu} \approx\left(6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right)\left(2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right)\left(3156 \mathrm{~cm}^{-1}\right) \approx \\
& 6.269 \times 10^{-22} \mathrm{~J} \mathrm{~m} \mathrm{~cm}^{-1}= \\
& 6.269 \times 10^{-20} \mathrm{~J}=6.269 \times 10^{-2} \mathrm{aJ}
\end{aligned}
$$

[^8]where the values of h and c_{0} are taken from the fundamental physical constants in Chapter 5 , p. 111 and we have used the relation $1 \mathrm{~m}=100 \mathrm{~cm}$, or $1 \mathrm{~m}_{\mathrm{cm}^{-1}}=100$. Since the electronvolt is given by the equation (Section 7.2, "energy", p. 137) $1 \mathrm{eV} \approx 1.6022 \times 10^{-19} \mathrm{~J}$, or $1 \mathrm{aJ} \approx(1 / 0.16022) \mathrm{eV}$,
$$
\Delta E \approx\left(6.269 \times 10^{-2} / 0.16022\right) \mathrm{eV} \approx 0.3913 \mathrm{eV}
$$

Similarly the hartree is given by $E_{\mathrm{h}}=\hbar^{2} / m_{\mathrm{e}}{a_{0}}^{2} \approx 4.3597 \mathrm{aJ}$, or 1 aJ $\approx(1 / 4.3597) E_{\mathrm{h}}$ (Section 3.9.1, p. 94), and thus the excitation energy is given in atomic units by

$$
\Delta E \approx\left(6.269 \times 10^{-2} / 4.3597\right) E_{\mathrm{h}} \approx 1.4379 \times 10^{-2} E_{\mathrm{h}}
$$

Finally the molar excitation energy is given by

$$
\Delta E_{\mathrm{m}}=L \Delta E \approx\left(6.022 \times 10^{23} \mathrm{~mol}^{-1}\right)\left(6.269 \times 10^{-2} \mathrm{aJ}\right) \approx 37.75 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Also, since $1 \mathrm{kcal}:=4.184 \mathrm{~kJ}$, or $1 \mathrm{~kJ}:=(1 / 4.184) \mathrm{kcal}$,

$$
\Delta E_{\mathrm{m}} \approx(37.75 / 4.184) \mathrm{kcal} \mathrm{~mol}^{-1} \approx 9.023 \mathrm{kcal} \mathrm{~mol}^{-1}
$$

In the transformation from ΔE to ΔE_{m} the coefficient L is not a number, but has a dimension different from one. Also in this example the necessary transformation coefficient could have been taken directly from the table in the back of this manual.

Example 4. The molar conductivity, Λ, of an electrolyte is defined by the equation

$$
\Lambda=\kappa / c
$$

where κ is the conductivity of the electrolyte solution minus the conductivity of the pure solvent and c is the electrolyte concentration. Conductivities of electrolytes are usually expressed in $\mathrm{S} \mathrm{cm}^{-1}$ and concentrations in mol dm^{-3}; for example $\kappa(\mathrm{KCl}) \approx 7.39 \times 10^{-5} \mathrm{~S} \mathrm{~cm}^{-1}$ for $c(\mathrm{KCl}) \approx 0.000500 \mathrm{~mol} \mathrm{dm}^{-3}$. The molar conductivity can then be calculated as follows

$$
\begin{aligned}
\Lambda \approx & \left(7.39 \times 10^{-5} \mathrm{~S} \mathrm{~cm}^{-1}\right) /\left(0.000500 \mathrm{~mol} \mathrm{dm}^{-3}\right) \approx \\
& 0.1478 \mathrm{~S} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} \mathrm{dm}^{3}=147.8 \mathrm{~S} \mathrm{~mol}^{-1} \mathrm{~cm}^{2}
\end{aligned}
$$

since $1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}$. The above relation has previously often been, and sometimes still is, written in the not-recommended form

$$
\Lambda=1000 \kappa / c
$$

However, in this form the symbols do not represent physical quantities, but the numerical values of physical quantities expressed in certain units. Specifically, the last equation is true only if Λ is the numerical value of the molar conductivity in $\mathrm{S} \mathrm{mol}^{-1} \mathrm{~cm}^{2}, \kappa$ is the numerical value of the conductivity in $\mathrm{S} \mathrm{cm}^{-1}$, and c is the numerical value of the concentration in $\mathrm{mol} \mathrm{dm}^{-3}$. This form does not follow the rules of quantity calculus, and should be avoided. The equation $\Lambda=\kappa / c$, in which the symbols represent physical quantities, is true in any units. If it is desired to write the relation between numerical values it should be written in the form

$$
\Lambda /\left(\mathrm{S} \mathrm{~mol}^{-1} \mathrm{~cm}^{2}\right)=\frac{1000 \kappa /\left(\mathrm{S} \mathrm{~cm}^{-1}\right)}{c /\left(\mathrm{mol} \mathrm{dm}^{-3}\right)}
$$

Example 5. A solution of 0.125 mol of solute B in $m_{\mathrm{S}} \approx 953 \mathrm{~g}$ of solvent S has a molality b_{B} given by (see also footnote ${ }^{2}$, below)

$$
b_{\mathrm{B}}=n_{\mathrm{B}} / m_{\mathrm{S}} \approx(0.125 / 953) \mathrm{mol} \mathrm{~g}^{-1} \approx 0.131 \mathrm{~mol} \mathrm{~kg}^{-1}
$$

The amount-of-substance fraction of solute is approximately given by

$$
x_{\mathrm{B}}=n_{\mathrm{B}} /\left(n_{\mathrm{S}}+n_{\mathrm{B}}\right) \approx n_{\mathrm{B}} / n_{\mathrm{S}}=b_{\mathrm{B}} M_{\mathrm{S}}
$$

where it is assumed that $n_{\mathrm{B}} \ll n_{\mathrm{S}}$.
If the solvent is water with molar mass $18.015 \mathrm{~g} \mathrm{~mol}^{-1}$, then

$$
x_{\mathrm{B}} \approx\left(0.131 \mathrm{~mol} \mathrm{~kg}^{-1}\right)\left(18.015 \mathrm{~g} \mathrm{~mol}^{-1}\right) \approx 2.36 \mathrm{~g} / \mathrm{kg}=0.00236
$$

These equations are sometimes quoted in the deprecated form $b_{\mathrm{B}}=1000 n_{\mathrm{B}} / M_{\mathrm{S}}$, and $x_{\mathrm{B}} \approx b_{\mathrm{B}} M_{\mathrm{S}} / 1000$. However, this is not a correct use of quantity calculus because in this form the symbols denote the numerical values of the physical quantities in particular units; specifically it is assumed that $b_{\mathrm{B}}, m_{\mathrm{S}}$ and M_{S} denote numerical values in $\mathrm{mol} \mathrm{kg}^{-1}, \mathrm{~g}$, and $\mathrm{g} \mathrm{mol}^{-1}$ respectively. A correct way of writing the second equation would, for example, be

$$
x_{\mathrm{B}}=\left(b_{\mathrm{B}} / \mathrm{mol} \mathrm{~kg}^{-1}\right)\left(M_{\mathrm{S}} / \mathrm{g} \mathrm{~mol}^{-1}\right) / 1000
$$

Example 6. For paramagnetic materials the magnetic susceptibility may be measured experimentally and used to give information on the molecular magnetic dipole moment, and hence on the electronic structure of the molecules in the material. The paramagnetic contribution to the molar magnetic susceptibility of a material, χ_{m}, is related to the molecular magnetic dipole moment m by the Curie relation

$$
\chi_{\mathrm{m}}=\chi V_{\mathrm{m}}=\mu_{0} N_{\mathrm{A}} m^{2} / 3 k T
$$

In the older non-rationalized esu, emu, and Gaussian systems (see Section 7.3, p. 143), this equation becomes

$$
\chi_{\mathrm{m}}^{(\mathrm{ir})}=\chi^{(\mathrm{ir})} V_{\mathrm{m}}=N_{\mathrm{A}} m^{2} / 3 k T
$$

Solving for m, and expressing the result in terms of the Bohr magneton μ_{B}, in the ISQ(SI)

$$
m / \mu_{\mathrm{B}}=\left(3 k / \mu_{0} N_{\mathrm{A}}\right)^{1 / 2} \mu_{\mathrm{B}}^{-1}\left(\chi_{\mathrm{m}} T\right)^{1 / 2}
$$

and in the non-rationalized emu and Gaussian systems

$$
m / \mu_{\mathrm{B}}=\left(3 k / N_{\mathrm{A}}\right)^{1 / 2} \mu_{\mathrm{B}}^{-1}\left(\chi_{\mathrm{m}}^{(\mathrm{ir})} T\right)^{1 / 2}
$$

Finally, using the values of the fundamental physical constants $\mu_{\mathrm{B}}, k, \mu_{0}$, and N_{A} given in Chapter 5, p. 111, we obtain

$$
m / \mu_{\mathrm{B}} \approx 0.7977\left[\chi_{\mathrm{m}} /\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)\right]^{1 / 2}[T / \mathrm{K}]^{1 / 2} \approx 2.828\left[\chi_{\mathrm{m}}^{(\mathrm{ir})} /\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)\right]^{1 / 2}[T / \mathrm{K}]^{1 / 2}
$$

These expressions are convenient for practical calculations. The final result has frequently been expressed in the not recommended form

$$
m / \mu_{\mathrm{B}} \approx 2.828\left(\chi_{\mathrm{m}} T\right)^{1 / 2}
$$

where it is assumed, contrary to the conventions of quantity calculus, that χ_{m} and T denote the numerical values of the molar susceptibility and the temperature in the units $\mathrm{cm}^{3} \mathrm{~mol}^{-1}$ and K , respectively, and where it is also assumed (but rarely stated) that the susceptibility is defined using the electromagnetic equations defined within non-rationalized systems (see Section 7.3, p. 143).

[^9]Example 7. The esu or Gaussian unit of the electric charge is $\sqrt{\mathrm{erg} \mathrm{cm}}$. Alternatively, the franklin (Fr) is used to represent $\sqrt{\mathrm{ergcm}}$ (see Section 7.3 , p. 143). The definition of the franklin states that two particles, each having an electric charge of one franklin and separated by a distance of one centimetre, repel each other with a force of one dyn. In order to obtain a conversion factor to the SI unit coulomb, one needs to ask what charges produce the same force in SI units at the same distance. One has thus

$$
1 \text { dyn }=1 \mathrm{~cm} \mathrm{~g} \mathrm{~s}^{-2}=10^{-5} \mathrm{~N}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q^{2}}{\left(10^{-2} \mathrm{~m}\right)^{2}}
$$

It follows (see Section 7.3, p. 143) that

$$
Q^{2}=4 \pi \varepsilon_{0} \times 10^{-9} \mathrm{Nm}^{2}=\mu_{0} \varepsilon_{0} \times 10^{-2} \mathrm{~A}^{2} \mathrm{~m}^{2}=c_{0}^{-2} \times 10^{-2} \mathrm{~A}^{2} \mathrm{~m}^{2}
$$

and thus

$$
Q=\frac{1}{10 c_{0}} \mathrm{Am}=\frac{10}{\zeta} \mathrm{C}
$$

where ζ is the exact number $\zeta=c_{0} /\left(\mathrm{cm} \mathrm{s}^{-1}\right)=29979245800$ (see Sections 7.2 and 7.3 , p. 135 and 143). Thus $1 \mathrm{Fr}=1 /\left(2.99792458 \times 10^{9}\right) \mathrm{C}$.

Example 8. The esu or Gaussian unit of the electric field strength is $\sqrt{\mathrm{erg} \mathrm{cm}} \mathrm{cm}^{-2}$ or, alternatively, $\mathrm{Fr} \mathrm{cm}^{-2}$. Simple insertion of the above mentioned relation between the franklin and the coulomb would yield $1 \mathrm{Fr} \mathrm{cm}^{-2}=\left(10^{5} / \zeta\right) \mathrm{C} \mathrm{m}^{-2}$. However, $\mathrm{C} \mathrm{m}^{-2}$ is not the unit of the electric field strength in the SI. In order to obtain the conversion factor for the electric field strength in the SI, one has to set

$$
1 \frac{\mathrm{Fr}}{\mathrm{~cm}^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \times \frac{10^{5}}{\zeta} \frac{\mathrm{C}}{\mathrm{~m}^{2}}
$$

From Example 7 one has $4 \pi \varepsilon_{0} \times 10^{-9} \mathrm{Nm}^{2}=(10 / \zeta)^{2} \mathrm{C}^{2}$, thus

$$
\frac{10^{5} \mathrm{C}}{4 \pi \varepsilon_{0} \zeta \mathrm{~m}^{2}}=\zeta \times 10^{-6} \frac{\mathrm{~N}}{\mathrm{C}}
$$

One concludes that $1 \mathrm{Fr} \mathrm{cm}^{-2}=\zeta \times 10^{-6} \mathrm{~V} \mathrm{~m}^{-1}$.

Example 9. The esu or Gaussian unit of the polarizability is cm^{3} : in a system of charges with polarizability $1 \mathrm{~cm}^{3}$, a field of $1 \mathrm{Fr} / \mathrm{cm}^{2}$ produces a dipole moment of 1 Fr cm (see Section 7.3 , p. 143). The corresponding value of this polarizability in the SI is obtained as follows:

$$
1 \mathrm{~cm}^{3}=\frac{p}{E}=\frac{(10 / \zeta) \mathrm{C} 10^{-2} \mathrm{~m}}{\zeta 10^{-6} \mathrm{~V} \mathrm{~m}^{-1}}=\zeta^{-2} 10^{5} \mathrm{~m}^{2} \mathrm{CV}^{-1}
$$

One has thus $1 \mathrm{~cm}^{3}=\left(10^{5} / \zeta^{2}\right) \mathrm{m}^{2} \mathrm{C}^{2} \mathrm{~J}^{-1}$, from the definition of the volt. This equation seems strange, at a first sight. It does not give a general relation between a volume of $1 \mathrm{~cm}^{3}$ and other units in the SI. Rather it states that a polarizability that has the value $1 \mathrm{~cm}^{3}$ in the esu or Gaussian system has the value $\left(10^{5} / \zeta^{2}\right) \mathrm{m}^{2} \mathrm{C}^{2} \mathrm{~J}^{-1}$ in the SI.

7.2 CONVERSION TABLES FOR UNITS

The table below gives conversion factors from a variety of units to the corresponding SI unit. Examples of the use of this table have already been given in the preceding section. For each physical quantity the name is given, followed by the recommended symbol(s). Then the SI unit is given, followed by the esu, emu, Gaussian unit, atomic unit (au), and other units in common use, with their conversion factors to SI and other units. The constant ζ which occurs in some of the electromagnetic conversion factors is the exact number $29979245800=c_{0} /\left(\mathrm{cm} \mathrm{s}^{-1}\right)$.

The inclusion of non-SI units in this table should not be taken to imply that their use is to be encouraged. With some exceptions, SI units are always to be preferred to non-SI units. However, since many of the units below are to be found in the scientific literature, it is convenient to tabulate their relation to the SI.

For convenience units in the esu, emu and Gaussian systems are quoted in terms of the four dimensions length, mass, time, and electric charge, by including the franklin (Fr) as the electrostatic unit of charge and the biot (Bi) as the electromagnetic unit of current. This gives each physical quantity the same dimensions in all systems, so that all conversion factors are numbers. The factors $4 \pi \varepsilon_{0}=k_{\text {es }}{ }^{-1}$ and the Fr may be eliminated by writing Fr $=\operatorname{erg}^{1 / 2} \mathrm{~cm}^{1 / 2}=\mathrm{cm}^{3 / 2} \mathrm{~g}^{1 / 2} \mathrm{~s}^{-1}$, and $k_{\text {es }}=1 \mathrm{Fr}^{-2} \mathrm{erg} \mathrm{cm}=1$, to recover esu expressions in terms of three base units (see Section 7.3 , p. 143). The symbol Fr should be regarded as a symbol for the electrostatic unit of charge. Similarly, the factor $\mu_{0} / 4 \pi=k_{\text {em }}$ and the Bi may be eliminated by using $\mathrm{Bi}=\mathrm{dyn}^{1 / 2}=\mathrm{cm}^{1 / 2} \mathrm{~g}^{1 / 2} \mathrm{~s}^{-1}$, and $k_{\mathrm{em}}=$ dyn $\mathrm{Bi}^{-2}=1$, to recover emu expressions in terms of the three base units.

The table must be read in the following way, for example for the fermi, as a unit of length: $\mathrm{f}=10^{-15} \mathrm{~m}$ means that the symbol f of a length 13.1 f may be replaced by $10^{-15} \mathrm{~m}$, saying that the length has the value $13.1 \times 10^{-15} \mathrm{~m}$. A more difficult example involves for instance the polarizability α. When α is $17.8 \mathrm{~cm}^{3}$ in the Gaussian system, it is $\left(17.8 \times 10^{5} / \zeta^{2}\right) \mathrm{m}^{2} \mathrm{C}^{2} \mathrm{~J}^{-1} \approx$ $3.53 \times 10^{-9} \mathrm{~m}^{2} \mathrm{C}^{2} \mathrm{~J}^{-1}$ in the SI. That is, the symbol cm^{3} may be replaced by the expression $\left(10^{5} / \zeta^{2}\right) \mathrm{m}^{2} \mathrm{C}^{2} \mathrm{~J}^{-1}$ to obtain the value of the polarizability in the SI (see also the Example 9 in Section 7.1, p. 134). Conversion factors are either given exactly (when the $=$ sign is used; if it is a definition, the sign $:=$ is used), or they are given to the approximation that the corresponding physical constants are known (when the sign \approx is used). In the latter case the magnitude of the uncertainty is always less than 5 in the last digit quoted, if the uncertainty is not explicitly indicated.

Name	Symbol	Expressed in SI units	Notes
length, l(continued)			
astronomical unit	ua	$\approx 1.49597870691(6)$	
parsec	pc	$\approx 3.085678 \times 10^{16} \mathrm{~m}$	
light year	1.y.	$\approx 9.460730 \times 10^{15} \mathrm{~m}$	1
light second		$=299792458 \mathrm{~m}$	
area, A			
square metre (SI unit)	m^{2}		
barn	b	$=10^{-28} \mathrm{~m}^{2}$	
acre		$\approx 4046.856 \mathrm{~m}^{2}$	
are	a	$=100 \mathrm{~m}^{2}$	
hectare	ha	$=10^{4} \mathrm{~m}^{2}$	
volume, V			
cubic metre (SI unit)	m^{3}		
litre	1, L	$=1 \mathrm{dm}^{3}=10^{-3} \mathrm{~m}^{3}$	2
lambda	λ	$=10^{-6} \mathrm{dm}^{3}[=1 \mu \mathrm{l}]$	
barrel (US)		$=158.9873 \mathrm{dm}^{3}$	
gallon (US)	gal (US)	$=3.785412 \mathrm{dm}^{3}$	
gallon (UK)	gal (UK)	$=4.546092 \mathrm{dm}^{3}$	
plane angle, α			
radian (SI unit)	rad		
degree	${ }^{\circ}$, deg	$=(\pi / 180) \mathrm{rad} \approx(1 / 5$	
minute		$=(\pi / 10800) \mathrm{rad}[=$	
second		$=(\pi / 648000) \mathrm{rad}[=$	
gon	gon	$=(\pi / 200) \mathrm{rad} \approx(1 / 6$	
mass, m			
kilogram (SI unit)	kg		
gram (CGS unit)	g	$=10^{-3} \mathrm{~kg}$	
electron mass (au)	m_{e}	$\approx 9.10938215(45) \times 1$	
dalton, $\quad \mathrm{Da}, \mathrm{u} \quad:=m_{\mathrm{a}}\left({ }^{12} \mathrm{C}\right) / 12 \approx 1.66$ unified atomic mass unit			
tonne, (metric tonne) t $=1 \mathrm{Mg}=10^{3} \mathrm{~kg}$			
pound (avoirdupois) $\quad 1 \mathrm{~b} \quad=0.45359237 \mathrm{~kg}$			
pound, (metric pound)$=0.5 \mathrm{~kg}$			
ounce (avoirdupois) oz $=28.34952 \mathrm{~g}$			
$\text { ounce (troy) oz (troy) }=31.1034768 \mathrm{~g}$			
grain		$=64.79891 \mathrm{mg}$	

(1) This value refers to the Julian year $(1 \mathrm{a}=365.25 \mathrm{~d}, 1 \mathrm{~d}=86400 \mathrm{~s})$ [152]. l.y. is not a symbol according to the syntax rules of Section 1.3, p. 5, but is an often used abbreviation.
(2) ISO and IEC only use the lower case 1 for the litre.

Name	Symbol	Expressed in SI units	Notes
time, t			
second (SI unit, CGS unit)	S		
au of time	\hbar / E_{h}	$\approx 2.418884326505(16) \times 10^{-17} \mathrm{~s}$	
minute	min	$=60 \mathrm{~s}$	
hour	h	$=3600 \mathrm{~s}$	
day	d	$=24 \mathrm{~h}=86400 \mathrm{~s}$	3
year	a	$\approx 31556952 \mathrm{~s}$	4
svedberg	Sv	$=10^{-13} \mathrm{~s}$	
acceleration, a			
SI unit	$\mathrm{m} \mathrm{s}^{-2}$		
standard acceleration of		$=9.80665 \mathrm{~m} \mathrm{~s}^{-2}$	
gal (CGS unit)	Gal	$=10^{-2} \mathrm{~m} \mathrm{~s}^{-2}$	
force, F			
newton (SI unit)	N	$=1 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2}$	5
dyne (CGS unit)	dyn	$=1 \mathrm{~g} \mathrm{~cm} \mathrm{~s}{ }^{-2}=10^{-5} \mathrm{~N}$	
au of force	E_{h} / a_{0}	$\approx 8.23872206(41) \times 10^{-8} \mathrm{~N}$	
kilogram-force, kilopond	$\mathrm{kgf}=\mathrm{kp}$	$=9.80665 \mathrm{~N}$	
energy, E, U			
joule (SI unit)	J	$=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$	
erg (CGS unit)	erg	$=1 \mathrm{~g} \mathrm{~cm}^{2} \mathrm{~s}^{-2}=10^{-7} \mathrm{~J}$	
hartree (au)	$E_{\text {h }}$	$=\hbar^{2} / m_{\mathrm{e}}{a_{0}}^{2} \approx 4.35974394(22) \times 10^{-18} \mathrm{~J}$	
rydberg	Ry	$=E_{\mathrm{h}} / 2 \approx 2.17987197(11) \times 10^{-18} \mathrm{~J}$	
electronvolt	eV	$=e \cdot 1 \mathrm{~V} \approx 1.602176487(40) \times 10^{-19} \mathrm{~J}$	
calorie, thermochemical	$\mathrm{cal}_{\text {th }}$	$=4.184 \mathrm{~J}$	
calorie, international	$\mathrm{cal}_{\text {IT }}$	$=4.1868$ J	
$15^{\circ} \mathrm{C}$ calorie	cal_{15}	$\approx 4.1855 \mathrm{~J}$	
litre atmosphere	1 atm	$=101.325 \mathrm{~J}$	
British thermal unit	Btu	$=1055.06 \mathrm{~J}$	

(3) Note that the astronomical day is not exactly defined in terms of the second since so-called leapseconds are added or subtracted from the day semiannually in order to keep the annual average occurrence of midnight at 24:00:00 on the clock. However, in reference [3] hour and day are defined in terms of the second as given.
(4) The year is not commensurable with the day and not a constant. Prior to 1967, when the atomic standard was introduced, the tropical year 1900 served as the basis for the definition of the second. For the epoch 1900.0 it amounted to $365.24219879 \mathrm{~d} \approx 31556925.98 \mathrm{~s}$ and it decreases by 0.530 s per century. The calendar years are exactly defined in terms of the day: The Julian year is equal to 365.25 d ; the Gregorian year is equal to 365.2425 d ; the Mayan year is equal to 365.2420 d . The definition in the table corresponds to the Gregorian year. This is an average based on a year of length 365 d , with leap years of 366 d ; leap years are taken either when the year is divisible by 4 but is not divisible by 100 , or when the year is divisible by 400 . Whether the year 3200 should be a leap year is still open, but this does not have to be resolved until sometime in the middle of the 32 nd century. For conversion one may use in general approximately $1 \mathrm{a} \approx 3.1557 \times 10^{7}$ s. If more accurate statements are needed, the precise definition of the year used should be stated.

(Notes continued)
(5) 1 N is approximately the force exerted by the Earth upon an apple.
(6) $T /{ }^{\circ} \mathrm{R}=(9 / 5) T / \mathrm{K}$. Also, Celsius temperature t is related to thermodynamic temperature T by the equation

$$
t /{ }^{\circ} \mathrm{C}=T / \mathrm{K}-273.15
$$

Similarly Fahrenheit temperature t_{F} is related to Celsius temperature t by the equation

$$
t_{\mathrm{F}} /{ }^{\circ} \mathrm{F}=(9 / 5)\left(t /{ }^{\circ} \mathrm{C}\right)+32
$$

(7) The name "amagat" is unfortunately often used as a unit for both molar volume and amount density. Its value is slightly different for different gases, reflecting the deviation from ideal behaviour for the gas being considered.
(8) The unit röntgen, R , is employed to express exposure to X or γ radiation. $1 \mathrm{R}=2.58 \times 10^{-4} \mathrm{C}$ kg^{-1}.
(9) rem stands for röntgen equivalent man.
(10) ζ is the exact number $\zeta=c_{0} /\left(\mathrm{cm} \mathrm{s}^{-1}\right)=29979245800$.

Name	Symbol	Expressed in SI units	Notes
charge density, ρ			
SI unit	C m ${ }^{-3}$	$=1 \mathrm{As} \mathrm{m}^{-3}$	
esu, Gaussian	Fr cm ${ }^{-3}$	$:=\left(10^{7} / \zeta\right) \mathrm{Cm}^{-3} \approx$	10
		$3.335640952 \times 10^{-4} \mathrm{C} \mathrm{m}^{-3}$	
au	$e a_{0}{ }^{-3}$	$\approx 1.081202300(27) \times 10^{12} \mathrm{C} \mathrm{m}^{-3}$	
electric potential, V, ϕ			
electric tension, U			
volt (SI unit)	V	$=1 \mathrm{~J} \mathrm{C}^{-1}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-3} \mathrm{~A}^{-1}$	
esu, Gaussian	Fr cm ${ }^{-1}$	$=\zeta \times 10^{-8} \mathrm{~V}=299.792458 \mathrm{~V}$	10
"cm ${ }^{-1}$ "	$e \mathrm{~cm}^{-1} / 4 \pi \varepsilon_{0}$	$\approx 1.43996441(36) \times 10^{-7} \mathrm{~V}$	11
au	$e / 4 \pi \varepsilon_{0} a_{0}$	$=E_{\mathrm{h}} / e \approx 27.21138386(68) \mathrm{V}$	
mean international volt		$=1.00034 \mathrm{~V}$	
US international volt		$=1.000330 \mathrm{~V}$	
electric resistance, R			
mean international ohm		$=1.00049 \Omega$	
US international ohm		$=1.000495 \Omega$	
Gaussian	$\mathrm{s} \mathrm{cm}^{-1}$	$=\zeta^{2} \times 10^{-9} \Omega \approx 8.987551787 \times 10^{11} \Omega$	10
conductivity, κ, σ			
SI	S m ${ }^{-1}$	$=1 \mathrm{~kg}^{-1} \mathrm{~m}^{-3} \mathrm{~s}^{3} \mathrm{~A}^{2}$	
Gaussian	s^{-1}	$=\left(10^{11} / \zeta^{2}\right) \mathrm{S} \mathrm{m}^{-1} \approx$	10
		$1.112650056 \times 10^{-10} \mathrm{~S} \mathrm{~m}^{-1}$	
capacitance, C			
Gaussian	cm	$:=\left(10^{9} / \zeta^{2}\right) \mathrm{F} \approx 1.112650056 \times 10^{-12} \mathrm{~F}$	10
electric field strength, E			
SI unit	$\mathrm{V} \mathrm{~m}^{-1}$	$=1 \mathrm{~J} \mathrm{C}^{-1} \mathrm{~m}^{-1}=1 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-3} \mathrm{~A}^{-1}$	
esu, Gaussian	$\mathrm{Fr}^{-1} \mathrm{~cm}^{-2}$	$\begin{aligned} := & \zeta \times 10^{-6} \mathrm{~V} \mathrm{~m}^{-1}= \\ & 2.99792458 \times 10^{4} \mathrm{~V} \mathrm{~m}^{-1} \end{aligned}$	10
" cm^{-2} "	$e \mathrm{~cm}^{-2} / 4 \pi \varepsilon_{0}$	$\approx 1.43996441(36) \times 10^{-5} \mathrm{~V} \mathrm{~m}^{-1}$	11
au	$e / 4 \pi \varepsilon_{0} a_{0}{ }^{2}$	$=E_{\mathrm{h}} / e a_{0} \approx$	
		$5.14220632(13) \times 10^{11} \mathrm{~V} \mathrm{~m}^{-1}$	

(11) The units in quotation marks for electric potential through polarizability may be found in the literature, although they are strictly incorrect; the entry suggested in the column Symbol defines the unit in terms of physical quantities and other units, so that, for a conversion into the SI, the physical quantities only need to be replaced by their values in the SI and the units need to be interpreted as units in the SI.

electric field gradient, $E_{\alpha \beta}^{\prime}, q_{\alpha \beta}$
esu, Gaussian
" cm^{-3} "
$e \mathrm{~cm}^{-3} / 4 \pi \varepsilon_{0}$
$=E_{\mathrm{h}} / e a_{0}{ }^{2} \approx$
$9.71736166(24) \times 10^{21} \mathrm{~V} \mathrm{~m}^{-2}$
$=1 \mathrm{Asm}$
$:=\left(10^{-1} / \zeta\right) \mathrm{C} m \approx$
10
$=10^{-18} \mathrm{Fr} \mathrm{cm} \approx$
$3.335640952 \times 10^{-30} \mathrm{C}$ m
$\approx 1.602176487(40) \times 10^{-21} \mathrm{C} \mathrm{m}$
$\approx 8.47835281(21) \times 10^{-30} \mathrm{C} \mathrm{m}$
electric quadrupole moment, $Q_{\alpha \beta}, \Theta_{\alpha \beta}, e Q$
SI unit
$\mathrm{Cm}^{2}=1 \mathrm{Asm}^{2}$
esu, Gaussian
$\mathrm{Fr} \mathrm{cm}^{2} \quad:=\left(10^{-3} / \zeta\right) \mathrm{C} \mathrm{m}^{2} \approx$
10

$$
3.335640952 \times 10^{-14} \mathrm{C} \mathrm{~m}^{2}
$$

" cm^{2} ", quadrupole area

$$
e \mathrm{~cm}^{2} \quad \approx 1.602176487(40) \times 10^{-23} \mathrm{C} \mathrm{~m}^{2}
$$

au

$$
e a_{0}^{2} \quad \approx 4.48655107(11) \times 10^{-40} \mathrm{C} \mathrm{~m}^{2}
$$

polarizability, α
SI unit
esu, Gaussian

$$
\mathrm{J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{2}
$$

$$
=1 \mathrm{~F} \mathrm{~m}^{2}=1 \mathrm{~kg}^{-1} \mathrm{~s}^{4} \mathrm{~A}^{2}
$$

$\mathrm{Fr}^{2} \mathrm{~cm}^{3} \quad:=\left(10^{5} / \zeta^{2}\right) \mathrm{J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{2} \approx$

$$
1.112650056 \times 10^{-16} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{2}
$$

" $\mathrm{cm}^{3 "}$ ", polarizability volume $4 \pi \varepsilon_{0} \mathrm{~cm}^{3}$
$\approx 1.112650056 \times 10^{-16} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{2}$
" \AA "
$4 \pi \varepsilon_{0} \AA^{3}$
$\approx 1.112650056 \times 10^{-40} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{2}$
au

$$
4 \pi \varepsilon_{0} a_{0}^{3} \quad=e^{2} a_{0}^{2} / E_{\mathrm{h}} \approx
$$

$$
1.6487772536(34) \times 10^{-41} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{2}
$$

electric displacement, D
(volume) polarization, P
SI unit

$$
\begin{aligned}
\mathrm{C} \mathrm{~m}^{-2} & =1 \mathrm{~A} \mathrm{~s} \mathrm{~m}^{-2} \\
\mathrm{Fr} \mathrm{~cm}^{-2} & := \\
& \left(10^{5} / \zeta\right) \mathrm{C} \mathrm{~m}^{-2} \approx \\
& 3.335640952 \times 10^{-6} \mathrm{C} \mathrm{~m}^{-2}
\end{aligned}
$$

esu, Gaussian
magnetic flux density, B
(magnetic field)
tesla (SI unit)
gauss (emu, Gaussian)
au

$$
\begin{array}{ll}
\mathrm{T} & =1 \mathrm{~J} \mathrm{~A}^{-1} \mathrm{~m}^{-2}=1 \mathrm{~V} \mathrm{~s} \mathrm{~m}^{-2}=1 \mathrm{~Wb} \mathrm{~m}^{-2} \\
\mathrm{G} & =10^{-4} \mathrm{~T} \\
\hbar / e a_{0}{ }^{2} & \approx 2.350517382(59) \times 10^{5} \mathrm{~T}
\end{array}
$$

(12) The use of the esu or Gaussian unit for electric displacement usually implies that the nonrationalized displacement is being quoted, $D^{(\mathrm{ir})}=4 \pi D$ (see Section 7.3, p. 143).

(13) In practice the oersted, Oe, is only used as a unit for $H^{(\text {ir })}=4 \pi H$, thus when $H^{(i r)}=1$ Oe, $H=\left(10^{3} / 4 \pi\right) \mathrm{A} \mathrm{m}^{-1}$ (see Section 7.3, p. 143). In the Gaussian or emu system, gauss and oersted are equivalent units.
(14) The Bohr magneton μ_{B} is sometimes denoted BM (or B.M.), but this is not recommended.
(15) In practice susceptibilities quoted in the context of emu or Gaussian units are always values for $\chi^{(\text {ir })}=\chi / 4 \pi$; thus when $\chi^{(\text {ir })}=10^{-6}, \chi=4 \pi \times 10^{-6}$ (see Section 7.3, p. 143).
(16) In practice the units $\mathrm{cm}^{3} \mathrm{~mol}^{-1}$ usually imply that the non-rationalized molar susceptibility is being quoted $\chi_{\mathrm{m}}{ }^{(\mathrm{ir})}=\chi_{\mathrm{m}} / 4 \pi$; thus, for example if $\chi_{\mathrm{m}}{ }^{(\text {ir })}=-15 \times 10^{-6} \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$, which is often written as " -15 cgs ppm", then $\chi_{\mathrm{m}}=-1.88 \times 10^{-10} \mathrm{~m}^{3} \mathrm{~mol}^{-1}$ (see Section 7.3, p. 143).

7.3 THE ESU, EMU, GAUSSIAN, AND ATOMIC UNIT SYSTEMS IN RELATION TO THE SI

The ISQ (see Section 1.2, p. 4) equations of electromagnetic theory are usually used with physical quantities in SI units, in particular the four base units metre (m), kilogram (kg), second (s), and ampere (A) for length, mass, time, and electric current, respectively. The basic equations for the electrostatic force $\boldsymbol{F}_{\text {es }}$ between particles with charges Q_{1} and Q_{2} in vacuum, and for the infinitesimal electromagnetic force ${ }^{2} \boldsymbol{F}_{\text {em }}$ between conductor elements of length $\mathrm{d} \boldsymbol{l}_{1}$ and $\mathrm{d} \boldsymbol{l}_{2}$ and corresponding currents I_{1} and I_{2} in vacuum, are

$$
\begin{aligned}
\boldsymbol{F}_{\text {es }} & =Q_{1} Q_{2} \boldsymbol{r} / 4 \pi \varepsilon_{0} r^{3} \\
\mathrm{~d}^{2} \boldsymbol{F}_{\text {em }} & =\left(\mu_{0} / 4 \pi\right) I_{1} \mathrm{~d} l_{1} \times\left(I_{2} \mathrm{~d} \boldsymbol{l}_{2} \times \boldsymbol{r}\right) / r^{3}
\end{aligned}
$$

where particles and conductor elements are separated by the vector \boldsymbol{r} (with $|\boldsymbol{r}|=r$). The physical quantity ε_{0}, the electric constant (formerly called permittivity of vacuum), is defined in the SI system to have the value

$$
\varepsilon_{0}=\left(10^{7} / 4 \pi c_{0}^{2}\right) \mathrm{kg}^{-1} \mathrm{~m}^{-1} \mathrm{C}^{2} \approx 8.854187817 \times 10^{-12} \mathrm{C}^{2} \mathrm{~m}^{-1} \mathrm{~J}^{-1}
$$

Similarly, the physical quantity μ_{0}, the magnetic constant (formerly called the permeability of vacuum), has the value

$$
\mu_{0}:=4 \pi \times 10^{-7} \mathrm{~N} \mathrm{~A}^{-2} \approx 1.2566370614 \times 10^{-6} \mathrm{~N} \mathrm{~A}^{-2}
$$

in the SI system. In different unit systems ε_{0} and μ_{0} may have different numerical values and units. In this book we use ε_{0} and μ_{0} as shorthands for the SI values as given above and prefer to use more general symbols k_{es} and k_{em} to describe these quantities in other systems of units and equations as discussed below. The SI value of μ_{0} results from the definition of the ampere (Section 3.3, p. 87). The value of ε_{0} then results from the Maxwell relation

$$
\varepsilon_{0} \mu_{0}=1 / c_{0}{ }^{2}
$$

where c_{0} is the speed of light in vacuum (see Chapter 5, p. 111).
More generally, following ideas outlined in [153] and [154], the basic equations for the electrostatic and electromagnetic forces may be written as

$$
\begin{aligned}
\boldsymbol{F}_{\text {es }} & =k_{\text {es }} \frac{Q_{1} Q_{2} r}{r^{3}} \\
\mathrm{~d}^{2} \boldsymbol{F}_{\text {em }} & =\frac{k_{\text {em }}}{k^{2}} \frac{I_{1} \mathrm{~d} l_{1} \times\left(I_{2} \mathrm{~d} l_{2} \times \boldsymbol{r}\right)}{r^{3}}
\end{aligned}
$$

where the three constants $k_{\mathrm{es}}, k_{\mathrm{em}}$ and k satisfy a more general Maxwell relation

$$
k^{2} \cdot k_{\mathrm{es}} / k_{\mathrm{em}}=c_{0}^{2}
$$

The introduction of three constants is necessary in order to describe coherently the system of units and equations that are in common use in electromagnetic theory. These are, in addition to the SI, the esu (electrostatic unit) system, the emu (electromagnetic unit) system, the Gaussian system, and the system of atomic units. The constants k, k_{es}, and k_{em} have conventionally the values given in the following table.

	$S I$	$e s u$	$e m u$	Gaussian	atomic units	Notes
k	1	1	1	$\zeta \mathrm{~cm} \mathrm{~s}^{-1}$	1	1
k_{es}	$1 / 4 \pi \varepsilon_{0}$	1	$\zeta^{2} \mathrm{~cm}^{2} \mathrm{~s}^{-2}$	1	1	2
k_{em}	$\mu_{0} / 4 \pi$	$\left(1 / \zeta^{2}\right) \mathrm{s}^{2} \mathrm{~cm}^{-2}$	1	1	α^{2}	3,4

(1) ζ is the exact number $\zeta=c_{0} /\left(\mathrm{cm} \mathrm{s}^{-1}\right)=29979245800$, see p. 135.
(2) $1 / 4 \pi \varepsilon_{0}=\zeta^{2} \times 10^{-11} \mathrm{NA}^{-2} \mathrm{~m}^{2} \mathrm{~s}^{-2}$
(3) $\mu_{0} / 4 \pi=10^{-7} \mathrm{~N} \mathrm{~A}^{-2}$
(4) α is the fine-structure constant with $\alpha^{-1}=137.035999679(94)$ (see Chapter 5 , p. 111).

This table can be used together with Section 7.4, p. 146 to transform expressions involving electromagnetic quantities between several systems. One sees that, particularly in the Gaussian system, $k=c_{0}$. This guarantees, together with the general relation of Maxwell equations given in Section 7.4, that the speed of light in vacuum comes out to be c_{0} in the Gaussian system. Examples of transformations between the SI and the Gaussian system are also given in Section 7.4.

Additional remarks

(i) The esu system

In the esu system, the base units are the centimetre (cm), gram (g), and second (s) for length, mass and time, respectively. The franklin, symbol Fr (see footnote ${ }^{1}$, below) for the electrostatic unit of charge may be introduced alternatively as a fourth base unit. Two particles with electric charges of one franklin, one centimetre apart in a vacuum, repel each other with a force of $1 \mathrm{dyn}=1 \mathrm{~cm}$ $\mathrm{g} \mathrm{s}^{-2}$. From this definition, one obtains the relation $1 \mathrm{Fr}=(10 / \zeta) \mathrm{C}$ (see Example 7, Section 7.1, p. 134). Since $k_{\mathrm{es}}=1$, from the general definition of the electrostatic force given above, the equation $\mathrm{Fr}=\mathrm{erg}^{1 / 2} \mathrm{~cm}^{1 / 2}$ is true in the esu system, where $\mathrm{erg}^{1 / 2} \mathrm{~cm}^{1 / 2}$ is the esu of charge. In this book the franklin is thus used for convenience as a name for the esu of charge.

(ii) The emu system

In the emu system, the base units are the centimetre (cm), gram (g), and second (s) for length, mass and time. The biot (symbol Bi) for the electromagnetic unit of electric current may be introduced alternatively as a fourth base unit. Two long wires separated by one centimetre with electric currents of one biot that flow in the same direction, repel each other in a vacuum with a lineic force (force per length) of $1 \mathrm{dyn} / \mathrm{cm}$. From this definition one obtains the relation $1 \mathrm{Bi}=10 \mathrm{~A}$. Since $k_{\text {em }}=$ 1 , from the general definition of the electromagnetic force given above, the equation $\mathrm{Bi}=\mathrm{dyn}{ }^{1 / 2}$ is true in the emu system, where dyn ${ }^{1 / 2}$ is the emu of electric current. The biot has generally been used as a compact expression for the emu of electric current.

(iii) The Gaussian system

In the Gaussian system, the esu and emu systems are mixed. From the relation of the franklin and the biot to the SI units one readily obtains

$$
1 \mathrm{Bi}=\zeta \mathrm{Fr} \mathrm{~s}^{-1}
$$

Since $k_{\mathrm{es}}=1$ and $k_{\mathrm{em}}=1$, the value of the constant k is determined to be c_{0} by the more general Maxwell relation given above. In treatises about relativity theory k is sometimes set to 1 , which corresponds to a transformation of the time axis from a coordinate t to a coordinate $x=c_{0} t$.

[^10]
(iv) The atomic units system

In the system of atomic units [22] (see also Section 3.9.1, p. 94), charges are given in units of the elementary charge e, currents in units of $e E_{\mathrm{h}} / \hbar$, where E_{h} is the hartree and \hbar is the Planck constant divided by 2π, lengths are given in units of the bohr, a_{0}, the electric field strength is given in units of $E_{\mathrm{h}} / e a_{0}$, the magnetic flux density in units of $\hbar / e a_{0}{ }^{2}$. Conversion factors from these and other atomic units to the SI are included in Sections 3.9.1 and 7.2, p. 94 and 135. Thus, since conventionally $k=1$, it follows that $k_{\text {es }}=1$ in this system (see footnote ${ }^{2}$) and $k_{\mathrm{em}}=\alpha^{2}$ (see footnote ${ }^{3}$).

(v) Non-rationalized quantities

The numerical constant 4π is introduced into the definitions of ε_{0} and μ_{0} because of the spherical symmetry involved in the equations defining $\boldsymbol{F}_{\text {es }}$ and $\mathrm{d}^{2} \boldsymbol{F}_{\text {em }}$ above; in this way its appearance is avoided in later equations, i.e., in the Maxwell equations. When factors of 4π are introduced in this way, as in the SI, the equations are also called "rationalized".

Furthermore, it is usual to include the factor 4π in the following quantities, when converting the electromagnetic equation from the SI system to the esu, emu, Gaussian and atomic units system:

$$
\begin{aligned}
D^{(\text {ir })} & =4 \pi D \\
H^{(\text {ir })} & =4 \pi H \\
\chi_{\mathrm{e}}{ }^{(\mathrm{ir})} & =\chi_{\mathrm{e}} / 4 \pi \\
\chi^{(\mathrm{ir})} & =\chi / 4 \pi
\end{aligned}
$$

where the superscript (ir), for irrational, meaning non-rationalized, denotes the value of the corresponding quantity in a "non-rationalized" unit system as opposed to a system like the SI, which is "rationalized" in the sense described above.

The magnetic permeability μ is given as $\mu=\mu_{\mathrm{r}} k_{\mathrm{em}} 4 \pi=\mu_{\mathrm{r}} \mu_{0}$ in the SI, and as $\mu=\mu_{\mathrm{r}} k_{\mathrm{em}}$ in the non-rationalized unit system. μ_{r} is the dimensionless relative permeability and is defined in terms of the magnetic susceptibility in Section 7.4, p. 147. The electric permittivity ε is given as $\varepsilon=\varepsilon_{\mathrm{r}} 4 \pi / k_{\mathrm{es}}=\varepsilon_{\mathrm{r}} \cdot \varepsilon_{0}$ in the SI, and as $\varepsilon=\varepsilon_{\mathrm{r}} / k_{\mathrm{es}}$ in non-rationalized unit systems. ε_{r} is the dimensionless relative permittivity and is defined in terms of the electric susceptibility in Section 7.4, p. 146.
${ }^{2}$ Since $E_{\mathrm{h}}=\frac{e^{2}}{4 \pi \varepsilon_{0} a_{0}}, E=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{2}}=\frac{E_{\mathrm{h}} a_{0}}{e^{2}} \frac{Q}{r^{2}}=\frac{E_{\mathrm{h}}}{e a_{0}} \frac{(Q / e)}{\left(r / a_{0}\right)^{2}}$.
${ }^{3}$ Since the value of the speed of light in atomic units is the reciprocal of the fine-structure constant, α^{-1}, the condition $k^{2} k_{\mathrm{es}} / k_{\mathrm{em}}=c_{0}^{2}$ yields $k_{\mathrm{em}}=\alpha^{2}$ in atomic units for $k=1$.

7.4 TRANSFORMATION OF EQUATIONS OF ELECTROMAGNETIC THEORY BETWEEN THE ISQ(SI) AND GAUSSIAN FORMS

General relation

$I S Q(S I)$
Gaussian
Force between two localized charged particles in vacuum (Coulomb law):
$\boldsymbol{F}=k_{\mathrm{es}} Q_{1} Q_{2} \boldsymbol{r} / r^{3}$
$\boldsymbol{F}=Q_{1} Q_{2} \boldsymbol{r} / 4 \pi \varepsilon_{0} r^{3}$
$\boldsymbol{F}=Q_{1} Q_{2} \boldsymbol{r} / r^{3}$

Electrostatic potential around a localized charged particle in vacuum:
$\phi=k_{\mathrm{es}} Q / r$
$\phi=Q / 4 \pi \varepsilon_{0} r$
$\phi=Q / r$

Relation between electric field strength and electrostatic potential:
$\boldsymbol{E}=-\boldsymbol{\nabla} \phi$
$\boldsymbol{E}=-\nabla \phi$
$\boldsymbol{E}=-\nabla \phi$

Field due to a charge distribution ρ in vacuum (Gauss law):
$\nabla \cdot \boldsymbol{E}=4 \pi k_{\mathrm{es}} \rho$
$\nabla \cdot \boldsymbol{E}=\rho / \varepsilon_{0}$
$\boldsymbol{\nabla} \cdot \boldsymbol{E}=4 \pi \rho$

Electric dipole moment of a charge distribution:

$\boldsymbol{p}=\int \rho \boldsymbol{r} \mathrm{d} V$

$$
\boldsymbol{p}=\int \rho \boldsymbol{r} \mathrm{d} V
$$

$$
\boldsymbol{p}=\int \rho \boldsymbol{r} \mathrm{d} V
$$

Potential around a dipole in vacuum:
$\phi=k_{\mathrm{es}} \boldsymbol{p} \cdot \boldsymbol{r} / r^{3}$
$\phi=\boldsymbol{p} \cdot \boldsymbol{r} / 4 \pi \varepsilon_{0} r^{3}$
$\phi=\boldsymbol{p} \cdot \boldsymbol{r} / r^{3}$
Energy of a charge distribution in an electric field:
$E=Q \phi-\boldsymbol{p} \cdot \boldsymbol{E}+\cdots$
$E=Q \phi-\boldsymbol{p} \cdot \boldsymbol{E}+\cdots$
$E=Q \phi-\boldsymbol{p} \cdot \boldsymbol{E}+\cdots$
Electric dipole moment induced in an electric field:
$\boldsymbol{p}=\alpha \boldsymbol{E}+\cdots$
$\boldsymbol{p}=\alpha \boldsymbol{E}+\cdots$
$\boldsymbol{p}=\alpha \boldsymbol{E}+\cdots$

Dielectric polarization:
$\boldsymbol{P}=\chi_{\mathrm{e}} \boldsymbol{E} / 4 \pi k_{\mathrm{es}}$
$\boldsymbol{P}=\chi_{\mathrm{e}} \varepsilon_{0} \boldsymbol{E}$
$\boldsymbol{P}=\chi \mathrm{e}^{(\mathrm{ir})} \boldsymbol{E}$

Electric susceptibility and relative permittivity:
$\varepsilon_{\mathrm{r}}=1+\chi_{\mathrm{e}}$
$\varepsilon_{\mathrm{r}}=1+\chi_{\mathrm{e}}$
$\varepsilon_{\mathrm{r}}=1+4 \pi \chi_{\mathrm{e}}{ }^{(\mathrm{ir})}$

Electric displacement ${ }^{1}$:
$\boldsymbol{D}=\boldsymbol{E} / 4 \pi k_{\mathrm{es}}+\boldsymbol{P}$
$\boldsymbol{D}=\varepsilon_{0} \boldsymbol{E}+\boldsymbol{P}$
$\boldsymbol{D}^{(\text {ir })}=\boldsymbol{E}+4 \pi \boldsymbol{P}$
$\boldsymbol{D}=\varepsilon_{\mathrm{r}} \boldsymbol{E} / 4 \pi k_{\mathrm{es}}$
$\boldsymbol{D}=\varepsilon_{0} \varepsilon_{\mathrm{r}} \boldsymbol{E}$
$\boldsymbol{D}^{(\mathrm{ir})}=\varepsilon_{\mathrm{r}} \boldsymbol{E}$

Capacitance of a parallel plate condenser, area A, separation d :
$C=\varepsilon_{\mathrm{r}} A / 4 \pi k_{\mathrm{es}} d$
$C=\varepsilon_{0} \varepsilon_{\mathrm{r}} A / d$
$C=\varepsilon_{\mathrm{r}} A / 4 \pi d$

Force between two current elements in vacuum:
$\mathrm{d}^{2} \boldsymbol{F}=\frac{k_{\mathrm{em}}}{k^{2}} \frac{I_{1} \mathrm{~d} \boldsymbol{l}_{1} \times\left(\mathrm{I}_{2} \mathrm{~d} \boldsymbol{l}_{2} \times \boldsymbol{r}\right)}{r^{3}} \quad \mathrm{~d}^{2} \boldsymbol{F}=\frac{\mu_{0}}{4 \pi} \frac{I_{1} \mathrm{~d} \boldsymbol{l}_{1} \times\left(I_{2} \mathrm{~d} \boldsymbol{l}_{2} \times \boldsymbol{r}\right)}{r^{3}} \quad \mathrm{~d}^{2} \boldsymbol{F}=\frac{I_{1} \mathrm{~d} \boldsymbol{l}_{1} \times\left(I_{2} \mathrm{~d} \boldsymbol{l}_{2} \times \boldsymbol{r}\right)}{c_{0}^{2} r^{3}}$
Magnetic vector potential due to a current element in vacuum:
$\mathrm{d} \boldsymbol{A}=\frac{k_{\text {em }}}{k} I \mathrm{~d} \boldsymbol{l} / r$
$\mathrm{d} \boldsymbol{A}=\frac{\mu_{0}}{4 \pi} I \mathrm{~d} \boldsymbol{l} / r$
$\mathrm{d} \boldsymbol{A}=I \mathrm{~d} \boldsymbol{l} / c_{0} r$

Relation between magnetic flux density and magnetic vector potential:
$\boldsymbol{B}=\nabla \times \boldsymbol{A}$
$\boldsymbol{B}=\nabla \times \boldsymbol{A}$
$B=\nabla \times A$

Magnetic flux density due to a current element in vacuum (Biot-Savart law):
$\mathrm{d} \boldsymbol{B}=\frac{k_{\mathrm{em}}}{k} I \mathrm{~d} \boldsymbol{l} \times \boldsymbol{r} / r^{3}$
$\mathrm{d} \boldsymbol{B}=\frac{\mu_{0}}{4 \pi} I \mathrm{~d} \boldsymbol{l} \times \boldsymbol{r} / r^{3}$
$\mathrm{d} \boldsymbol{B}=I \mathrm{~d} \boldsymbol{l} \times \boldsymbol{r} / c_{0} r^{3}$
(1) The second equation holds in isotropic media.

Magnetic flux density due to a current density \boldsymbol{j} in vacuum (Ampère law):
$\nabla \times \boldsymbol{B}=4 \pi \frac{k_{\mathrm{em}}}{k} \boldsymbol{j}$
$\nabla \times \boldsymbol{B}=\mu_{0} \boldsymbol{j}$
$\nabla \times B=4 \pi \boldsymbol{j} / c_{0}$

Force on a current element in a magnetic flux density:
$\mathrm{d} \boldsymbol{F}=I \mathrm{~d} \boldsymbol{l} \times \boldsymbol{B} / k$
$\mathrm{d} \boldsymbol{F}=I \mathrm{~d} \boldsymbol{l} \times \boldsymbol{B}$
$\mathrm{d} \boldsymbol{F}=I \mathrm{~d} \boldsymbol{l} \times \boldsymbol{B} / c_{0}$
Magnetic dipole of a current loop of area \boldsymbol{A} :
$\boldsymbol{m}=I \boldsymbol{A} / k$
$\boldsymbol{m}=I \boldsymbol{A}$
$\boldsymbol{m}=I \boldsymbol{A} / c_{0}$
Magnetic vector potential around a magnetic dipole in vacuum:
$\boldsymbol{A}=k_{\mathrm{em}} \boldsymbol{m} \times \boldsymbol{r} / r^{3}$
$\boldsymbol{A}=\frac{\mu_{0}}{4 \pi} \boldsymbol{m} \times \boldsymbol{r} / r^{3}$
$\boldsymbol{A}=\boldsymbol{m} \times \boldsymbol{r} / r^{3}$

Energy of a magnetic dipole in a magnetic flux density:
$E=-\boldsymbol{m} \cdot \boldsymbol{B}$
$E=-\boldsymbol{m} \cdot \boldsymbol{B}$
$E=-\boldsymbol{m} \cdot \boldsymbol{B}$
Magnetic dipole induced by a magnetic flux density:

$$
\boldsymbol{m}=\xi \boldsymbol{B}+\cdots
$$

$\boldsymbol{m}=\xi \boldsymbol{B}+\cdots$
$\boldsymbol{m}=\xi \boldsymbol{B}+\cdots$
Magnetization:
$\boldsymbol{M}=\chi \boldsymbol{H}$
$\boldsymbol{M}=\chi \boldsymbol{H}$
$\boldsymbol{M}=\chi^{(\mathrm{ir})} \boldsymbol{H}^{(\mathrm{ir})}$
Magnetic susceptibility and relative permeability:

$$
\mu_{\mathrm{r}}=1+\chi
$$

$$
\mu_{\mathrm{r}}=1+\chi
$$

$$
\mu_{\mathrm{r}}=1+4 \pi \chi^{(\mathrm{ir})}
$$

Magnetic field strength ${ }^{1}$:
$\boldsymbol{H}=\boldsymbol{B} / 4 \pi k_{\mathrm{em}}-\boldsymbol{M}$
$\boldsymbol{H}=\boldsymbol{B} / \mu_{0}-\boldsymbol{M}$
$\boldsymbol{H}^{(\mathrm{ir})}=\boldsymbol{B}-4 \pi \boldsymbol{M}$
$\boldsymbol{H}=\boldsymbol{B} / 4 \pi \mu_{r} k_{\mathrm{em}}$
$\boldsymbol{H}=\boldsymbol{B} / \mu_{0} \mu_{r}$
$\boldsymbol{H}^{(\mathrm{ir})}=\boldsymbol{B} / \mu_{r}$
Conductivity:
$\boldsymbol{j}=\kappa \boldsymbol{E}$
$\boldsymbol{j}=\kappa \boldsymbol{E}$
$\boldsymbol{j}=\kappa \boldsymbol{E}$

Self-inductance of a solenoid of volume V with n windings per length:
$L=4 \pi \frac{k_{\mathrm{em}}}{k^{2}} \mu_{\mathrm{r}} n^{2} V$
$L=\mu_{0} \mu_{\mathrm{r}} n^{2} V$
$L=4 \pi \mu_{\mathrm{r}} n^{2} V / c_{0}{ }^{2}$

Faraday induction law:
$\nabla \times \boldsymbol{E}+\frac{1}{k} \frac{\partial \boldsymbol{B}}{\partial t}=\mathbf{0}$
$\nabla \times \boldsymbol{E}+\partial \boldsymbol{B} / \partial t=\mathbf{0}$
$\boldsymbol{\nabla} \times \boldsymbol{E}+\frac{1}{c_{0}} \frac{\partial \boldsymbol{B}}{\partial t}=\mathbf{0}$

Relation between the electric field strength and electromagnetic potentials:
$\boldsymbol{E}=-\nabla \phi-\frac{1}{k} \frac{\partial \boldsymbol{A}}{\partial t}$

$$
\boldsymbol{E}=-\nabla \phi-\partial \boldsymbol{A} / \partial t
$$

$\boldsymbol{E}=-\boldsymbol{\nabla} \phi-\frac{1}{c_{0}} \frac{\partial \boldsymbol{A}}{\partial t}$

Maxwell equations:
$\nabla \cdot \boldsymbol{D}=\rho$
$\nabla \cdot \boldsymbol{D}=\rho$
$\boldsymbol{\nabla} \cdot \boldsymbol{D}^{(\mathrm{ir})}=4 \pi \rho$
$k \boldsymbol{\nabla} \times \boldsymbol{H}-\partial \boldsymbol{D} / \partial t=\boldsymbol{j}$
$\nabla \times \boldsymbol{H}-\partial \boldsymbol{D} / \partial t=\boldsymbol{j}$
$\nabla \times \boldsymbol{H}^{(\mathrm{ir})}-\frac{1}{c_{0}} \frac{\partial \boldsymbol{D}^{(\mathrm{ir})}}{\partial t}=\frac{4 \pi}{c_{0}} \boldsymbol{j}$
$k \boldsymbol{\nabla} \times \boldsymbol{E}+\partial \boldsymbol{B} / \partial t=\mathbf{0}$
$\nabla \times \boldsymbol{E}+\partial \boldsymbol{B} / \partial t=\mathbf{0}$
$\nabla \times \boldsymbol{E}+\frac{1}{c_{0}} \frac{\partial \boldsymbol{B}}{\partial t}=\mathbf{0}$
$\nabla \cdot \boldsymbol{B}=0$
$\nabla \cdot \boldsymbol{B}=0$
$\boldsymbol{\nabla} \cdot \boldsymbol{B}=0$

Wave equations for the electromagnetic potentials ϕ and \boldsymbol{A} (in Lorentz gauge):
$\Delta \phi-\frac{k_{\mathrm{em}}}{k^{2} k_{\mathrm{es}}} \frac{\partial^{2} \phi}{\partial t^{2}}=-4 \pi k_{\mathrm{es}} \rho \quad \Delta \phi-\varepsilon_{0} \mu_{0} \frac{\partial^{2} \phi}{\partial t^{2}}=-\rho / \varepsilon_{0} \quad \Delta \phi-\frac{1}{c_{0}{ }^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}=-4 \pi \rho$
$\Delta \boldsymbol{A}-\frac{k_{\mathrm{em}}}{k^{2} k_{\mathrm{es}}} \frac{\partial^{2} \boldsymbol{A}}{\partial t^{2}}=-4 \pi k_{\mathrm{em}} \boldsymbol{j} \quad \Delta \boldsymbol{A}-\varepsilon_{0} \mu_{0} \frac{\partial^{2} \boldsymbol{A}}{\partial t^{2}}=-\mu_{0} \boldsymbol{j} \quad \Delta \boldsymbol{A}-\frac{1}{c_{0}{ }^{2}} \frac{\partial^{2} \boldsymbol{A}}{\partial t^{2}}=-\frac{4 \pi}{c_{0}} \boldsymbol{j}$
$\nabla \boldsymbol{A}+\frac{k_{\mathrm{em}}}{k k_{\mathrm{es}}} \frac{\partial \phi}{\partial t}=0$
$\nabla \boldsymbol{A}+\varepsilon_{0} \mu_{0} \frac{\partial \phi}{\partial t}=0 \quad \nabla \boldsymbol{A}+\frac{1}{c_{0}} \frac{\partial \phi}{\partial t}=0$
Energy density of radiation:
$U / V=(\boldsymbol{E} \cdot \boldsymbol{D}+\boldsymbol{B} \cdot \boldsymbol{H}) / 2 \quad U / V=(\boldsymbol{E} \cdot \boldsymbol{D}+\boldsymbol{B} \cdot \boldsymbol{H}) / 2 \quad \forall / V=\left(\boldsymbol{E} \cdot \boldsymbol{D}^{(\mathrm{ir})}+\boldsymbol{B} \cdot \boldsymbol{H}^{(\mathrm{ir})}\right) / 8 \pi$
Rate of radiation energy flow (Poynting vector):
$\boldsymbol{S}=k \boldsymbol{E} \times \boldsymbol{H} \quad \boldsymbol{S}=\boldsymbol{E} \times \boldsymbol{H}$
Force on a moving charge Q with velocity \boldsymbol{v} (Lorentz force):
$\boldsymbol{F}=Q(\boldsymbol{E}+\boldsymbol{v} / k \times \boldsymbol{B})$
$\boldsymbol{F}=Q(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B})$

- $\quad=Q\left(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B} / c_{0}\right)$

$$
\boldsymbol{S}=\frac{c_{0}}{4 \pi} \boldsymbol{E} \times \boldsymbol{H}^{(\mathrm{ir})}
$$

8 UNCERTAINTY

It is vital to report an uncertainty estimate along with a measurement. In brief, a report of a quantitative experimental (or theoretical) result should contain a statement about what the expected "best estimate" for the true result is, as well as a statement of the probable range of possible values specifying the uncertainty. The expected dispersion of the measured values arises from a number of sources. The contribution to the uncertainty from all these sources should be estimated as part of an uncertainty budget. The tables show some of the ways in which the contributions to the uncertainty budget can be estimated and combined and the examples below show how a full statement of the resulting combined uncertainty estimate can be presented. The present summary is based on [8].

8.1 REPORTING UNCERTAINTY FOR A SINGLE MEASURED QUANTITY

Uncertainties for a measured quantity X can be reported in several ways by giving the expected best estimate for the quantity together with a second quantity defining an uncertainty which corresponds to some probable range for the true quantity. We use the notation X for measured quantities, x for measurement results, and u_{c} for uncertainty.
Example 1. $\quad m_{\mathrm{s}}=100.02147 \mathrm{~g}$ with a combined standard uncertainty (i.e., estimated standard uncertainty) of $u_{\mathrm{c}}=0.35 \mathrm{mg}$. Since it can be assumed that the possible estimated values of the standard are approximately normally distributed with approximate standard deviation u_{c}, the unknown value of the standard is believed to lie in the interval $m_{\mathrm{s}} \pm u_{\mathrm{c}}$ with a level of confidence of approximately 68%.

Example 2. $\quad m_{\mathrm{s}}=(100.02147 \pm 0.00070) \mathrm{g}$, where the number following the symbol \pm is the numerical value of an expanded uncertainty $U=k u_{\mathrm{c}}$, with U determined from a combined standard uncertainty (i.e., estimated standard deviation) $u_{\mathrm{c}}=0.35 \mathrm{mg}$ and a coverage factor of $k=2$. Since it can be assumed that the possible estimated values of the standard are approximately normally distributed with approximate standard deviation u_{c}, the unknown value of the standard is believed to lie within the interval defined by U with a level of confidence of 95% (see Section 8.3, p. 154).

Example 3. $\quad m_{\mathrm{s}}=100.02147(35) \mathrm{g}$, where the number in parentheses denotes the combined standard uncertainty $u_{\mathrm{c}}=0.35 \mathrm{mg}$ and is assumed to apply to the least significant digits.

Name
Symbol Definition

Probability distributions

probability distribution of $x f(x)$
The probability density of the quantity having the value x; normal (Gaussian), rectangular, triangular, Student- t, etc.
expected value of x mean
variance
standard deviation
$E[x] \quad E[x]=\int x f(x) \mathrm{d} x$
$\mu \quad E[x]$
$\sigma^{2} \quad E\left[(x-\mu)^{2}\right]$
$\sigma \quad \sigma=+\sqrt{\sigma^{2}}$

Statistics

number of measurements
mean
N
$\bar{x} \quad \bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}$
variance

$$
s^{2}(x)
$$

$$
s^{2}(x)=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}
$$

standard deviation
standard deviation of
$s(x) \quad s(x)=+\sqrt{s^{2}(x)}$
$s(\bar{x}) \quad s(\bar{x})=s(x) / \sqrt{N}$
the mean
(1) This is an unbiased estimate and takes into account the removal of one degree of freedom because the spread is measured about the mean.

Uncertainties

standard uncertainty of $x_{i} \quad u\left(x_{i}\right)$
Type A evaluation

Type B evaluation

relative standard uncertainty of x	$u_{\mathrm{r}}\left(x_{i}\right)$
combined standard	$u_{\mathrm{c}}(y)$
\quad uncertainty of the	
measurement result y	
relative combined standard	$u_{\mathrm{c}, \mathrm{r}}(y)$

expanded uncertainty $\quad U \quad U=k u_{\mathrm{c}}(y)$

Estimated by Type A or B approaches
Type A evaluation (of standard uncertainty) is a method of evaluation of a standard uncertainty by the statistical analysis of a series of observations
Type B evaluation (of standard uncertainty) is a method of evaluation of a standard uncertainty by means other than the statistical analysis of a series of observations (for instance, it is usually based on scientific judgement using all relevant information that is available)
$u_{\mathrm{r}}\left(x_{i}\right)=u\left(x_{i}\right) /\left|x_{i}\right| \quad\left(x_{i} \neq 0\right)$

Estimated uncertainty in y from all the compo-
$y=f\left(x_{1}, x_{2}, \cdots, x_{M}\right)$
$u_{\mathrm{c}, \mathrm{r}}(y)=u_{\mathrm{c}}(y) /|y| \quad(y \neq 0)$
$U=k u_{\mathrm{c}}(y)$
6

6
(Notes continued)
(2) The uncertainty in the result of a measurement generally consists of several components which may be grouped into two categories according to the way in which their numerical value is estimated:
Type A: Those which are evaluated by statistical methods
Type B: Those which are evaluated by other means
A detailed report on uncertainty should consist of a complete list of the components, specifying for each the method used to obtain its numerical value. This provides the "uncertainty budget".
(3) Examples of type A evaluations are calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a function to data in order to estimate the parameters of the function and their standard deviations; and carrying out an analysis of variance (ANOVA) in order to identify and quantify random effects in certain kinds of measurements. These components of the uncertainty are characterized by the estimated variances $s_{i}{ }^{2}$ (or the estimated "standard deviations" s_{i}) and the number of degrees of freedom ν_{i}. Where appropriate, the covariances should be given.
(4) This knowledge may include previous measurement data, general knowledge of the behavior and properties of relevant materials and instruments, manufacturer's specifications, data provided in calibration and other reports. These components of uncertainty should be characterized by quantities $u_{j}{ }^{2}$, which may be considered approximations to the corresponding variances, the existence of which is assumed. The quantities $u_{j}{ }^{2}$ may be treated like variances and the quantities u_{j} like standard deviations.

8.2 PROPAGATION OF UNCERTAINTY FOR UNCORRELATED MEASUREMENTS

For a discussion of the treatment of correlated uncertainties, see [8].

Measurement equation	Reported measurement result	Equation for the combined standard uncertainty	Notes
$Y=\sum_{i=1}^{N} a_{i} X_{i}$	$y=\sum_{i=1}^{N} a_{i} x_{i}$	$u_{\mathrm{c}}(y)=\left(\sum_{i=1}^{N} a_{i}{ }^{2} u^{2}\left(x_{i}\right)\right)^{1 / 2}$	1
$Y=A X_{1}{ }^{a_{1}} X_{2}{ }^{a_{2}} \cdots X_{N}{ }^{a_{N}}$	$y=A x_{1}{ }^{a_{1}} x_{2}{ }^{a_{2}} \cdots x_{N}^{a_{N}}$	$u_{\mathrm{c}, \mathrm{r}}(y)=\left(\sum_{i=1}^{N} a_{i}{ }^{2} u_{\mathrm{r}}{ }^{2}\left(x_{i}\right)\right)^{1 / 2}$	2

(1) This is sometimes known as addition in quadrature. The measurement equation is represented by a sum of quantities X_{i} multiplied by a constant a_{i}. The a_{i} are assumed to be known with certainty.
(2) The measurement equation is represented by a product of quantities X_{i} raised to powers $a_{1}, a_{2}, \cdots, a_{N}$ and multiplied by a constant $A . A$ and the a_{i} are assumed to be known with certainty.
(Notes continued)
(4) (continued)

Examples of Type B evaluations:
(a) If it is reasonable to assume that the quantity, X, can be modeled by a normal probability distribution then lower and upper limits a_{-}and a_{+}should be estimated such that the best estimated value of the input quantity is $x=\left(a_{-}+a_{+}\right) / 2$ (i.e., the centre of the limits) and there is one chance out of two (i.e., a 50% probability) that the value of the quantity lies in the interval a_{-}to a_{+}, then $u \approx 1.48\left(a_{+}-a_{-}\right) / 2$.
(b) If however the quantity, X, is better represented by a rectangular distribution then the lower and upper limits a_{-}and a_{+}of the input quantity should be estimated such that the probability that the value lies in the interval a_{-}and a_{+}is, for all practical purposes, 100%. Provided that there is no contradictory information, treat the quantity as if it is equally probable for its value to lie anywhere within the interval a_{-}to a_{+}; that is, model it by a uniform (i.e., rectangular) probability distribution. The best estimate of the value of the quantity is then $x=\left(a_{-}+a_{+}\right) / 2$ with the uncertainty $u=\left(a_{+}-a_{-}\right) / \sqrt{3}$.
(5) The quantity, Y being measured, called the measurand, is not measured directly, but is determined from M other quantities $X_{1}, X_{2}, \cdots, X_{M}$ through a function f (sometimes called the measurement equation), $Y=f\left(X_{1}, X_{2}, \cdots, X_{M}\right)$. The quantities X_{i} include corrections (or correction factors), as well as quantities that take into account other sources of variability, such as different observers, instruments, samples, and laboratories etc. An estimate of the measured quantity Y, denoted $y=f\left(x_{1}, x_{2}, \cdots, x_{M}\right)$, is obtained from the measurement equation using input estimates $x_{1}, x_{2}, \cdots, x_{M}$ for the values of the M input quantities. A similar situation exists if other quantities are to be derived from measurements. The propagation of uncertainty is illustrated in the table above.
(6) Some commercial, industrial, and regulatory applications require a measure of uncertainty that defines an interval about a measurement result y within which the value of the measurand Y can be confidently asserted to lie. In these cases the expanded uncertainty U is used, and is obtained by multiplying the combined standard uncertainty, $u_{\mathrm{c}}(y)$, by a coverage factor k. Thus $U=k u_{\mathrm{c}}(y)$ and it is confidently believed that Y is greater than or equal to $y-U$, and is less than or equal to $y+U$, which is commonly written as $Y=y \pm U$. The value of the coverage factor k is chosen on the basis of the desired level of confidence to be associated with the interval defined by $U=k u_{\mathrm{c}}$.

8.3 REPORTING UNCERTAINTIES IN TERMS OF CONFIDENCE INTERVALS

One can generally report the uncertainty by defining an interval, within which the quantity is expected to fall with a certain probability. This interval can be specified as $(y-U) \leq Y \leq(y+U)$.
Example $\quad 100.02140 \mathrm{~g} \leq m_{\mathrm{s}} \leq 100.02154 \mathrm{~g}$ or $m_{\mathrm{s}}=100.02147(7) \mathrm{g}$ or $m_{\mathrm{s}}=(100.02147 \pm 0.00007) \mathrm{g}$
When specifying such an interval, one should provide the confidence as the estimated probability with which the true quantity is expected to be in the given range (for example $60 \%, 90 \%$ or 95%). This probability can be estimated using a variety of probability distributions appropriate for the measurement under consideration (Gaussian, Student- t, etc. [8,9]).
(Notes continued)
(6) (continued) Typically, k is in the range of two to three. When the normal distribution applies and u_{c} is a reliable estimate of the standard deviation of $y, U=2 u_{\mathrm{c}}$ (i.e., $k=2$) defines an interval having a level of confidence of approximately 95%, and $U=3 u_{\text {c }}$ (i.e., $k=3$) defines an interval having a level of confidence greater than 99%.

9 ABBREVIATIONS AND ACRONYMS

Abbreviations and acronyms (words formed from the initial letters of groups of words that are frequently repeated) should be used sparingly. Unless they are well established (e.g. NMR, IR) they should always be defined once in any paper, and they should generally be avoided in titles and abstracts. Some acronyms have been accepted as common words, such as "laser" from the acronym LASER. Abbreviations used to denote physical quantities should if possible be replaced by the recommended symbol for the quantity (e.g. E_{i} rather than IP for ionization energy, see Section 2.5, p. 22; ρ rather than dens. for mass density, see Section 2.2 , p. 14). For further recommendations concerning abbreviations see [156].
A list of frequently used abbreviations and acronyms is given here to help readers, but not necessarily to encourage their universal usage. In many cases an acronym can be found written in lower case letters and in capitals. In the list which follows only the most common usage is given. More extensive lists for different spectroscopic methods have been published by IUPAC $[157,158]$ and by Wendisch [159]; an extensive list for acronyms used in theoretical chemistry has been published by IUPAC [21].

A/D analogue-to-digital
AA atomic absorption
AAS atomic absorption spectroscopy
ac alternating current
ACM adiabatic channel model
ACT activated complex theory
AD atom diffraction
ADC analogue-to-digital converter
AES Auger electron spectroscopy
AFM atomic force microscopy
AIUPS angle-integrated ultraviolet photoelectron spectroscopy
AM amplitude modulated
amu atomic mass unit
ANOVA analysis of variance
AO atomic orbital
APS appearance potential spectroscopy
ARAES angle-resolved Auger electron spectroscopy
ARPEFS angle-resolved photoelectron fine structure
AS Auger spectroscopy
ATR attenuated total (internal) reflection
AU astronomical unit
au atomic unit
bcc body-centred cubic
BET Brunauer-Emmett-Teller (adsorption isotherm)
BIPM Bureau International des Poids et Mesures
BIS bremsstrahlung isochromat spectroscopy
BM \quad Bohr magneton (symbol: μ_{B})
bp boiling point
Btu British thermal unit

CARS coherent anti-Stokes Raman scattering
CAS complete active space
CAS-SCF complete active space - self consistent field
CAT computer average of transients
CAWIA Commission on Atomic Weights and Isotopic Abundances (now CIAAW)
CCA coupled cluster approximation
CCC critical coagulation concentration
CCD coupled charge device
CCL colour centre laser
CCU Comité Consultatif d'Unités
ccp cubic close packed
CD circular dichroism
CEELS characteristic electron energy-loss spectroscopy
CELS characteristic energy-loss spectroscopy
CEPA coupled electron pair approximation
CGPM Conférence Générale des Poids et Mesures
cgs, CGS centimetre-gram-second
CI chemical ionization
CI
configuration interaction
CIAAW Commission on Isotopic Abundances and Atomic Weights (formerly CAWIA)

CIDEP	chemically induced dynamic electron polarization
CIDNP	chemically induced dynamic nuclear polarization
CIMS	chemical ionization mass spectroscopy
CIPM	Comité International des Poids et Mesures
CIVR	collision induced vibrational relaxation
CIVR	classical intramolecular vibrational redistribution
CMA	cylindrical mass analyzer
CME	chemically modified electrode
CNDO	complete neglect of differential overlap
CODATA	Committee on Data for Science and Technology
COMAS	Concentration Modulation Absorption Spectroscopy
CPD	contact-potential difference
CRDS	cavity ring-down spectroscopy
CSRS	coherent Stokes-Raman scattering
CT	charge transfer
CVD	chemical vapor deposition
CW	continuous wave
D/A	digital-to-analogue
DAC	digital-to-analogue converter
D4WM	degenerate 4-wave mixing
DAPS	disappearance potential spectroscopy
dc, DC	direct current
DFG	difference frequency generation
DFT	density functional theory
DLVO	Derjaguin-Landau-Verwey-Overbeek
DME	dropping mercury electrode
DQMC	diffusion quantum Monte Carlo

ENDOR electron-nuclear double resonance
EPR electron paramagnetic resonance
ESCA electron spectroscopy for chemical applications (or analysis), see XPS
ESD electron stimulated desorption
ESDIAD electron stimulated desorption ion angular distribution
ESR electron spin resonance
esu electrostatic unit
ETS electron transmission spectroscopy, electron tunneling spectroscopy
eu entropy unit
EXAFS extended X-ray absorption fine structure
EXAPS electron excited X-ray appearance potential spectroscopy
EXELFS extended electron energy-loss fine structure
FAB(MS) fast atom bombardment (mass spectroscopy)
fcc face-centred cubic
FD field desorption
FEESP field-emitted electron spin-polarization [spectroscopy]
FEM field emission [electron] microscopy
FES field emission spectroscopy
FFT fast Fourier transform
FI field ionization
FID flame ionization detector
FID free induction decay
FIM field-ion microscopy
FIMS field-ion mass spectroscopy
FIR far-infrared
FM frequency modulated
FPD flame photometric detector
FSR free spectral range
FT Fourier transform
FTD flame thermionic detector
FTIR Fourier transform infrared
FWHM full width at half maximum

GC gas chromatography
GIXS grazing-incidence X-ray scattering
GLC gas-liquid chromatography
GM Geiger-Müller
GTO Gaussian-type orbital
GVB generalized valence bond
hcp hexagonal close-packed
HEED high-energy electron diffraction
HEELS high-energy electron energy-loss spectroscopy
HEIS high-energy ion scattering
HF Hartree-Fock
hfs hyperfine structure (hyperfine splitting)
HMDE hanging mercury drop electrode
HMO Hückel molecular orbital
HOMO highest occupied molecular orbital

HPLC	high-performance liquid chromatography
HREELS	high-resolution electron energy-loss spectroscopy
HTS	Hadamard transform spectroscopy
HWP	half-wave potential
I/O	input-output
IBA	ion beam analysis
IC	integrated circuit
ICISS	impact-collision ion scattering spectroscopy
ICR	ion cyclotron resonance
id	inner diameter
IEC	International Electrotechnical Commission
IEP	isoelectric point
IEPA	independent electron pair approximation
IETS	inelastic electron tunneling spectroscopy
ILEED	inelastic low-energy electron diffraction
INDO	incomplete neglect of differential overlap
INDOR	internuclear double resonance
INS	inelastic neutron scattering
INS	ion neutralization spectroscopy
IP	ionization potential (symbol: E_{i})
IPES	inverse photoelectron spectroscopy
IPTS	International Practical Temperature Scale
IR	infrared
IRAS	infrared absorption spectroscopy
IRS	infrared spectroscopy
IS	ionization spectroscopy
ISO	International Organization for Standardization
ISQ	International System of Quantities
ISS	ion scattering spectroscopy
ITS	International Temperature Scale
IUPAC	International Union of Pure and Applied Chemistry
IUPAP	International Union of Pure and Applied Physics
KS	Kohn-Sham
L	ligand
L2TOFMS	laser desorption laser photoionization time-of-flight mass spectroscopy
LASER	light amplification by stimulated emission of radiation
LC	liquid chromatography
LCAO	linear combination of atomic orbitals
L-CCA	linear coupled-cluster approximation
LCMO	linear combination of molecular orbitals
LED	light-emitting diode
LEED	low-energy electron diffraction
LEELS	low-energy electron energy-loss spectroscopy
LEES	low-energy electron scattering
LEF	laser excitation fluorescence
LEIS	low-energy ion scattering
LEPD	low-energy positron diffraction

LET	linear energy transfer
LH	Lindemann-Hinshelwood [theory]
LID	laser induced desorption
LIDAR	light detection and ranging
LIF	laser induced fluorescence
LIGS	laser induced grating spectroscopy
LIMA	laser microprobe mass analysis
LIS	laser isotope separation
LMR	laser magnetic resonance
LUMO	lowest unoccupied molecular orbital
M	central metal
MAR	magic-angle rotation
MAS	magic-angle spinning
MASER	microwave amplification by stimulated emission of radiation
MBE	molecular beam epitaxy
MBGF	many-body Green's function
MBPT	many-body perturbation theory
MC	Monte Carlo
MCA	multichannel analyser
MCD	magnetic circular dichroism
MCS	multichannel scalar
MCSCF	multiconfiguration self-consistent field
MD	molecular dynamics
MDS	metastable deexcitation spectroscopy
MEED	medium-energy electron diffraction
MEIS	medium-energy ion scattering
MFM	magnetic force microscopy
MINDO	modified incomplete neglect of differential overlap
MIR	mid-infrared
MKS	metre-kilogram-second
MKSA	metre-kilogram-second-ampere
MM	molecular mechanics
MO	molecular orbital
MOCVD	metal-organic chemical vapor deposition
MOMBE	metal-organic molecular beam epitaxy
MORD	magnetic optical rotatory dispersion
MOS	metal oxide semiconductor
mp	melting point
MPI	multiphoton ionization
MPPT	Møller-Plesset perturbation theory
MP-SCF	Møller-Plesset self-consistent field
MRD	magnetic rotatory dispersion
MRI	magnetic resonance imaging
MS	mass spectroscopy
MW	microwave
MW	molecular weight (symbol: M_{r})
NAA	neutron activation analysis
NCE	normal calomel electrode
Nd:YAG	Nd doped YAG

NETD noise equivalent temperature difference
NEXAFS near edge X-ray absorption fine structure
NIR near-infrared
NIR non-ionizing radiation
NMA nuclear microanalysis
NMR nuclear magnetic resonance
NOE nuclear Overhauser effect
NQR nuclear quadrupole resonance
NTP normal temperature and pressure
od outside diameter
ODMR optically detected magnetic resonance
OGS opto-galvanic spectroscopy
ORD optical rotatory dispersion
PAS photoacoustic spectroscopy
PC paper chromatography
PD photoelectron diffraction
PDG Particle Data Group
PED photoelectron diffraction
PEH photoelectron holography
PES photoelectron spectroscopy
PIES Penning ionization electron spectroscopy, see PIS
PIPECO photoion-photoelectron coincidence [spectroscopy]
PIPN periodically poled lithium niobate
PIS Penning ionization (electron) spectroscopy
PMT photomultiplier tube
ppb part per billion
pphm part per hundred million
ppm part per million
PPP Pariser-Parr-Pople
PS see PES
PSD photon stimulated desorption
pzc point of zero charge
QET quasi equilibrium theory
QMB quartz microbalance
QMC quantum Monte Carlo
QMS quadrupole mass spectrometer
RADAR radiowave detection and ranging
RBS Rutherford (ion) back scattering
RD rotatory dispersion
RDE rotating disc electrode
RDF radial distribution function
REM reflection electron microscopy
REMPI resonance enhanced multiphoton ionization
RF radio frequency
RHEED reflection high-energy electron diffraction
RHF restricted Hartree-Fock
RIMS resonant ionization mass spectroscopy

RKR Rydberg-Klein-Rees [potential]
rms root-mean-square
RRK Rice-Ramsperger-Kassel [theory]
RRKM Rice-Ramsperger-Kassel-Marcus [theory]
RRS resonance Raman spectroscopy
RS Raman spectroscopy
RSPT Rayleigh-Schrödinger perturbation theory

S singlet

SACM statistical adiabatic channel model
SAM scanning Auger microscopy
SBS stimulated Brillouin scattering
SBZ surface Brillouin zone
SCE saturated calomel electrode
SCF self-consistent field
SDCI singly and doubly excited configuration interaction
$\mathrm{S}_{\mathrm{E}} \quad$ substitution electrophilic
SEELFS surface extended energy-loss fine structure
SEFT spin-echo Fourier transform
SEM scanning [reflection] electron microscopy
SEP stimulated emission pumping
SERS surface-enhanced Raman spectroscopy
SES secondary electron spectroscopy
SESCA scanning electron spectroscopy for chemical applications
SEXAFS surface extended X-ray absorption fine structure
SF spontaneous fission
SFG sum-frequency generation
SHE standard hydrogen electrode
SHG second-harmonic generation
SI Système International d'Unités
SIMS secondary ion mass spectroscopy
SMOKE surface magneto-optic Kerr effect
$\mathrm{S}_{\mathrm{N}} 1 \quad$ substitution nucleophilic unimolecular
$\mathrm{S}_{\mathrm{N}} 2$ substitution nucleophilic bimolecular
$\mathrm{S}_{\mathrm{N}} \mathrm{i}$ substitution nucleophilic intramolecular
SOC spin-orbit coupling
SOR synchrotron orbital radiation
SPIES surface Penning ionization electron spectroscopy
SPLEED spin-polarized low-energy electron diffraction
SPM scanning probe microscopy
SR synchrotron radiation
SRS synchrotron radiation source
SSIMS static secondary ion mass spectroscopy
STEM scanning transmission [electron] microscopy
STM scanning tunnelling (electron) microscopy
STO Slater-type orbital
STP standard temperature and pressure
SVLF single vibronic level fluorescence

10 REFERENCES

10.1 PRIMARY SOURCES

[1] Manual of Symbols and Terminology for Physicochemical Quantities and Units
(a) 1st ed., M. L. McGlashan. Pure Appl. Chem., 21:1-38, 1970.
(b) 2nd ed., M. A. Paul. Butterworths, London, 1975.
(c) 3rd ed., D. H. Whiffen. Pure Appl. Chem., 51:1-36, 1979.
(d) D. H. Whiffen. Appendix I-Definitions of Activities and Related Quantities. Pure Appl. Chem., 51:37-41, 1979.
(e) D. H. Everett. Appendix II-Definitions, Terminology and Symbols in Colloid and Surface Chemistry, Part I. Pure Appl. Chem., 31:577-638, 1972.
(f) J. Lyklema and H. van Olphen. Appendix II-Definitions, Terminology and Symbols in Colloid and Surface Chemistry, Part 1.13: Selected Definitions, Terminology and Symbols for Rheological Properties. Pure Appl. Chem., 51:1213-1218, 1979.
(g) M. Kerker and J. P. Kratochvil. Appendix II-Definitions, Terminology and Symbols in Colloid and Surface Chemistry, Part 1.14: Light Scattering. Pure Appl. Chem., 55:931-941, 1983.
(h) R. L. Burwell Jr. Part II: Heterogeneous Catalysis. Pure Appl. Chem., 46:71-90, 1976.
(i) R. Parsons. Appendix III-Electrochemical Nomenclature. Pure Appl. Chem., 37:499-516, 1974.
(j) J. D. Cox. Appendix IV-Notation for States and Processes, Significance of the Word "Standard" in Chemical Thermodynamics, and Remarks on Commonly Tabulated Forms of Thermodynamic Functions. Pure Appl. Chem., 54:1239-1250, 1982.
(k) K. J. Laidler. Appendix V-Symbolism and Terminology in Chemical Kinetics. Pure Appl. Chem., 53:753-771, 1981.
[2] (a) I. Mills, T. Cvitas̆, K. Homann, N. Kallay and K. Kuchitsu. Quantities, Units and Symbols in Physical Chemistry. Blackwell Science, Oxford, 1st edition, 1988.
(b) I. Mills, T. Cvitas̆, K. Homann, N.Kallay and K. Kuchitsu. Quantities, Units and Symbols in Physical Chemistry. Blackwell Science, Oxford, 2nd edition, 1993.
(c) Nomenklaturniye Pravila IUPAC po Khimii, Vol. 6, Fizicheskaya Khimiya, Nacionalnii Komitet Sovetskih Khimikov, Moscow, 1988.
(d) M. Riedel. A Fizikai-kémiai Definiciók és Jelölések. Tankönyvkiadó, Budapest, 1990.
(e) K. Kuchitsu. Butsurikagaku de Mochiirareru Ryo, Tan-i, Kigo. Kodansha, Tokyo, 1991.
(f) K.-H. Homann, M. Hausmann. Größen, Einheiten und Symbole in der Physikalischen Chemie. VCH, Weinheim, 1996.
(g) D. I. Marchidan. Mărimi, Unităţi şi Simboluri în Chimia Fizică. Editura Academiei Române, Bucharest, 1996.
(h) A. P. Masiá, J. M. Guil, J. E. Herrero, A. R. Paniego. Magnitudes, Unidades y Símbolos en Química Física. Fundació Ramón Areces \& Real Sociedad Espan̆ola de Química, Madrid, 1999.
(i) J. M. Costa. Magnituds, Unitats i Simbols en Química Física. Institut d'Estudis Catalans, Barcelona, 2004.
[3] Bureau International des Poids et Mesures. Le Système International d'Unités (SI). 8th French and English Edition, BIPM, Sèvres, 2006.
[4] E. R. Cohen and P. Giacomo. Symbols, Units, Nomenclature and Fundamental Constants in Physics. 1987 Revision, Document I.U.P.A.P.-25 (IUPAP-SUNAMCO 87-1) also published in: Physica, 146A:1-67, 1987.
[5] International Standards, ISO
International Organization for Standardization, Geneva, Switzerland
(a) ISO 31-0: 1992, Quantities and units - Part 0: General principles

Amendment 1: 1998, Amendment 2: 2005
(b) ISO 80000-3: 2006, Quantities and units - Part 3: Space and time
(c) ISO 80000-4: 2006, Quantities and units - Part 4: Mechanics
(d) ISO 31-4: 1992, Quantities and units - Part 4: Heat

Amendment 1: 1998
(e) ISO 31-5: 1992, Quantities and units - Part 5: Electricity and magnetism

Amendment 1: 1998
(f) ISO 31-6: 1992, Quantities and units - Part 6: Light and related electromagnetic Amendment 1: 1998
(g) ISO 31-7: 1992, Quantities and units - Part 7: Acoustics

Amendment 1: 1998
(h) ISO 31-8: 1992, Quantities and units - Part 8: Physical chemistry and molecular physics
Amendment 1: 1998
(i) ISO 31-9: 1992, Quantities and units - Part 9: Atomic and nuclear physics Amendment 1: 1998
(j) ISO 31-10: 1992, Quantities and units - Part 10: Nuclear reactions and ionizing radiations
Amendment 1: 1998
(k) ISO 31-11: 1992, Quantities and units - Part 11: Mathematical signs and symbols for use in the physical sciences and technology
(m) ISO 31-12: 1992, Quantities and units - Part 12: Characteristic numbers Amendment 1: 1998
(n) ISO 31-13: 1992, Quantities and units - Part 13: Solid state physics Amendment 1: 1998
The different parts of ISO 31 are successively being replaced with ISO/IEC 80000.
[6] ISO 1000: 1992, SI Units and recommendations for the use of their multiples and of certain other units
Amendment 1: 1998
All the standards listed here ([5] and [6]) are jointly reproduced in the ISO Standards Handbook 2, Quantities and units, ISO, Geneva, 1993.
[7] International Standard, IEC International Electrotechnical Commission, Geneva. IEC 60027-2, 2005.
[8] Guide to the Expression of Uncertainty in Measurement (GUM), BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML, International Organization for Standardization, Geneva. 1st edition, 1993; corrected and reprinted, 1995.
[9] International Vocabulary of Metrology - Basic and General Concepts and Associated Terms (VIM), 3rd edition, 2007.

10.2 SECONDARY SOURCES

[10] M. Quack. Commission I. 1 at the IUPAC General Assembly 1995. Summary Minutes. Chem. Int., 20:12, 1998.
[11] E. A. Guggenheim. Units and Dimensions. Phil. Mag., 33:479-496, 1942.
[12] J. de Boer. On the History of Quantity Calculus and the International System. Metrologia, 31:405-429, 1994/95.
[13] I. M. Mills. The Language of Science. Metrologia, 34:101-109, 1997.
[14] J. C. Rigg, S. S. Brown, R. Dybkaer, and H. Olesen, editors. Compendium of Terminology and Nomenclature of Properties in Clinical Laboratory Sciences. Blackwell, Oxford, 1995.
[15] J. Rigaudy and S. P. Klesney. IUPAC Nomenclature of Organic Chemistry, Sections A, B, C, D, E, F, and H. Pergamon Press, Oxford, 4th edition, 1979.
[16] A. D. McNaught and A. Wilkinson. Compendium of Chemical Terminology - The Gold Book, 2nd edition. Blackwell, Oxford, 1997.
[17] P. Müller. Glossary of Terms Used in Physical Organic Chemistry. Pure Appl. Chem., 66:10771184, 1994.
[18] A. D. Jenkins, P. Kratochvíl, R. F. T. Stepto, and U. W. Suter. Glossary of Basic Terms in Polymer Science. Pure Appl. Chem., 68:2287-2311, 1996.
[19] L. D. Landau and E. M. Lifshitz, editors. Course of Theoretical Physics: Mechanics. Butterworth-Heinemann, Oxford, 1998.
[20] J. E. Boggs. Guidelines for Presentation of Methodological Choices in the Publication of Computational Results. A. Ab Initio Electronic Structure Calculations. Pure Appl. Chem., 70:1015-1018, 1998.
[21] R. D. Brown, J. E. Boggs, R. Hilderbrandt, K. Lim, I. M. Mills, E. Nikitin, and M. H. Palmer. Acronyms Used in Theoretical Chemistry. Pure Appl. Chem., 68:387-456, 1996.
[22] D. H. Whiffen. Expression of Results in Quantum Chemistry. Pure Appl. Chem., 50:75-79, 1978.
[23] P. J. Mohr, B. N. Taylor, and D. B. Newell. CODATA Recommended Values of the Fundamental Physical Constants: 2006. Rev. Mod. Phys., 80:633-730, 2008. The 2006 CODATA recommended values are available at http://physics.nist.gov/constants.
[24] J. Mullay. Estimation of Atomic and Group Electronegativities. Struct. Bonding (Berlin), 66:1-25, 1987.
[25] J. M. Brown, R. J. Buenker, A. Carrington, C. di Lauro, R. N. Dixon, R. W. Field, J. T. Hougen, W. Hüttner, K. Kuchitsu, M. Mehring, A. J. Merer, T. A. Miller, M. Quack, D. A. Ramsey, L. Veseth, and R. N. Zare. Remarks on the Signs of g-Factors in Atomic and Molecular Zeeman Spectroscopy. Mol. Phys., 98:1597-1601, 2000.
[26] M. Quack and J. Stohner. Combined Multidimensional Anharmonic and Parity Violating Effects in CDBrClF. J. Chem. Phys., 119:11228-11240, 2003.
[27] F. A. Jenkins. Report of Subcommittee f (Notation for the Spectra of Diatomic Molecules). J. Opt. Soc. Amer., 43:425-426, 1953.
[28] R. S. Mulliken. Report on Notation for the Spectra of Polyatomic Molecules. J. Chem. Phys., 23:1997-2011, 1955. (Erratum) J. Chem. Phys., 24:1118, 1956.
[29] G. Herzberg. Molecular Spectra and Molecular Structure Vol. II. Infrared and Raman Spectra of Polyatomic Molecules. Van Nostrand, Princeton, 1946.
[30] G. Herzberg. Molecular Spectra and Molecular Structure Vol. I. Spectra of Diatomic Molecules. Van Nostrand, Princeton, 1950.
[31] G. Herzberg. Molecular Spectra and Molecular Structure Vol. III. Electronic Spectra and Electronic Structure of Polyatomic Molecules. Van Nostrand, Princeton, 1966.
[32] E. D. Becker. Recommendations for the Presentation of Infrared Absorption Spectra in Data Collections - A. Condensed Phases. Pure Appl. Chem., 50:231-236, 1978.
[33] E. D. Becker, J. R. Durig, W. C. Harris, and G. J. Rosasco. Presentation of Raman Spectra in Data Collections. Pure Appl. Chem., 53:1879-1885, 1981.
[34] Physical Chemistry Division, Commission on Molecular Structure and Spectroscopy. Recommendations for the Presentation of NMR Data for Publication in Chemical Journals. Pure Appl. Chem., 29:625-628, 1972.
[35] Physical Chemistry Division, Commission on Molecular Structure and Spectroscopy. Presentation of NMR Data for Publication in Chemical Journals - B. Conventions Relating to Spectra from Nuclei other than Protons. Pure Appl. Chem., 45:217-219, 1976.
[36] Physical Chemistry Division, Commission on Molecular Structure and Spectroscopy. Nomenclature and Spectral Presentation in Electron Spectroscopy Resulting from Excitation by Photons. Pure Appl. Chem., 45:221-224, 1976.
[37] Physical Chemistry Division, Commission on Molecular Structure and Spectroscopy. Nomenclature and Conventions for Reporting Mössbauer Spectroscopic Data. Pure Appl. Chem., 45:211-216, 1976.
[38] J. H. Beynon. Recommendations for Symbolism and Nomenclature for Mass Spectroscopy. Pure Appl. Chem., 50:65-73, 1978.
[39] C. J. H. Schutte, J. E. Bertie, P. R. Bunker, J. T. Hougen, I. M. Mills, J. K. G. Watson, and B. P. Winnewisser. Notations and Conventions in Molecular Spectroscopy: Part 1. General Spectroscopic Notation. Pure Appl. Chem., 69:1633-1639, 1997.
[40] C. J. H. Schutte, J. E. Bertie, P. R. Bunker, J. T. Hougen, I. M. Mills, J. K. G. Watson, and B. P. Winnewisser. Notations and Conventions in Molecular Spectroscopy: Part 2. Symmetry Notation. Pure Appl. Chem., 69:1641-1649, 1997.
[41] P. R. Bunker, C. J. H. Schutte, J. T. Hougen, I. M. Mills, J. K. G. Watson, and B. P. Winnewisser. Notations and Conventions in Molecular Spectroscopy: Part 3. Permutation and Permutation-Inversion Symmetry Notation. Pure Appl. Chem., 69:1651-1657, 1997.
[42] R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow, and P. Granger. Parameters and Symbols for Use in Nuclear Magnetic Resonance. Pure Appl. Chem., 69:2489-2495, 1997.
[43] J. L. Markley, A. Bax, Y. Arata, C. W. Hilbers, R. Kaptein, B. D. Sykes, P. E. Wright, and K. Wüthrich. Recommendations for the Presentation of NMR Structures of Proteins and Nucleic Acids. Pure Appl. Chem., 70:117-142, 1998.
[44] J. K. G. Watson. Aspects of Quartic and Sextic Centrifugal Effects on Rotational Energy Levels. In J. R. Durig, editor, Vibrational Spectra and Structure, Vol. 6, pages 1-89, Amsterdam, 1977. Elsevier.
[45] G. Graner, E. Hirota, T. Iijima, K. Kuchitsu, D. A. Ramsay, J. Vogt, and N. Vogt. Structure Data of Free Polyatomic Molecules. In K. Kuchitsu, editor, Landolt-Börnstein, New Series, II/25C, pages $7-10$, Berlin, 2000. Springer.
[46] Y. Morino and T. Shimanouchi. Definition and Symbolism of Molecular Force Constants. Pure Appl. Chem., 50:1707-1713, 1978.
[47] R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow, and P. Granger. NMR Nomenclature. Nuclear Spin Properties and Conventions for Chemical Shifts. Pure Appl. Chem., 73:1795-1818, 2001.
[48] P. R. Bunker and P. Jensen. Molecular Symmetry and Spectroscopy, 2nd edition. NRC Research Press, Ottawa, 1998.
[49] J. M. Brown, J. T. Hougen, K.-P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Rostas, and R. N. Zare. The Labeling of Parity Doublet Levels in Linear Molecules. J. Mol. Spectrosc., 55:500-503, 1975.
[50] M. H. Alexander, P. Andresen, R. Bacis, R. Bersohn, F. J. Comes, P. J. Dagdigian, R. N. Dixon, R. W. Field, G. W. Flynn, K.-H. Gericke, E. R. Grant, B. J. Howard, J. R. Huber, D. S. King, J. L. Kinsey, K. Kleinermanns, K. Kuchitsu, A. C. Luntz, A. J. McCaffery, B. Pouilly, H. Reisler, S. Rosenwaks, E. W. Rothe, M. Shapiro, J. P. Simons, R. Vasudev, J. R. Wiesenfeld, C. Wittig, and R. N. Zare. A Nomenclature for Λ-doublet Levels in Rotating Linear Molecules. J. Chem. Phys., 89:1749-1753, 1988.
[51] M. Hamermesh. Group Theory and Its Application to Physical Problems. Addison-Wesley, Reading, 1962.
[52] H. C. Longuet-Higgins. The Symmetry Groups of Non-Rigid Molecules. Mol. Phys., 6:445460, 1963.
[53] I. M. Mills and M. Quack. Introduction to 'The Symmetry Groups of Non-Rigid Molecules' by H. C. Longuet-Higgins. Mol. Phys., 100:9-10, 2002.
[54] M. Quack. Detailed Symmetry Selection Rules for Reactive Collisions. Mol. Phys., 34:477-504, 1977.
[55] J. C. D. Brand, J. H. Callomon, K. K. Innes, J. Jortner, S. Leach, D. H. Levy, A. J. Merer, I. M. Mills, C. B. Moore, C. S. Parmenter, D. A. Ramsay, K. N. Rao, E. W. Schlag, J. K. G. Watson, and R. N. Zare. The Vibrational Numbering of Bands in the Spectra of Polyatomic Molecules. J. Mol. Spectrosc., 99:482-483, 1983.
[56] M. Terazima, N. Hirota, S. E. Braslavsky, A. Mandelis, S. E. Bialkowski, G. J. Diebold, R. J. D. Miller, D. Fournier, R. A. Palmer, and A. Tam. Quantities, Terminology, and Symbols in Photothermal and Related Spectroscopies. Pure Appl. Chem., 76:1083-1118, 2004.
[57] N. Sheppard, H. A. Willis, and J. C. Rigg. Names, Symbols, Definitions and Units of Quantities in Optical Spectroscopy. Pure Appl. Chem., 57:105-120, 1985.
[58] V. A. Fassel. Nomenclature, Symbols, Units and their Usage in Spectrochemical Analysis. I. General Atomic Emission Spectroscopy. Pure Appl. Chem., 30:651-679, 1972.
[59] W. H. Melhuish. Nomenclature, Symbols, Units and their Usage in Spectrochemical Analysis. VI: Molecular Luminescence Spectroscopy. Pure Appl. Chem., 56:231-245, 1984.
[60] J. W. Verhoeven. Glossary of Terms Used in Photochemistry. Pure Appl. Chem., 68:22232286, 1996.
[61] A. A. Lamola and M. S. Wrighton. Recommended Standards for Reporting Photochemical Data. Pure Appl. Chem., 56:939-944, 1984.
[62] M. Quack. Spectra and Dynamics of Coupled Vibrations in Polyatomic Molecules. Annu. Rev. Phys. Chem., 41:839-874, 1990.
[63] A. G. Maki and J. S. Wells. Wavenumber Calibration Tables from Heterodyne Frequency Measurements. NIST Special Publication 821, U.S. Department of Commerce, 1991.
[64] L. A. Pugh and K. N. Rao. Intensities from Infrared Spectra. In K. N. Rao, editor, Molecular Spectroscopy: Modern Research, Vol. 2, New York, 1978. Academic Press.
[65] M. A. Smith, C. P. Rinsland, B. Fridovich, and K. N. Rao. Intensities and Collision Broadening Parameters from Infrared Spectra. In K. N. Rao, editor, Molecular Spectroscopy: Modern Research, Vol. 3, New York, 1985. Academic Press.
[66] M. Quack. Multiphoton Excitation. In P. von Ragué Schleyer, N. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III, and P. R. Schreiner, editors, Encyclopedia of Computational Chemistry, Vol. 3, pages 1775-1791, Chichester, UK, 1998. John Wiley and Sons.
[67] J. E. Bertie, S. L. Zhang, H. H. Eysel, S. Baluja, and M. K. Ahmed. Infrared Intensities of Liquids XI: Infrared Refractive Indices from 8000 to $2 \mathrm{~cm}^{-1}$, Absolute Integrated Intensities, and Dipole Moment Derivatives of Methanol at $25^{\circ} \mathrm{C}$. Appl. Spec., 47:1100-1114, 1993.
[68] J. E. Bertie and C. Dale Keefe. Comparison of Infrared Absorption Intensities of Benzene in the Liquid and Gas Phases. J. Chem. Phys., 101:4610-4616, 1994.
[69] S. R. Polo and M. K. Wilson. Infrared Intensities in Liquid and Gas Phases. J. Chem. Phys., 23:2376-2377, 1955.
[70] Th. Hahn, editor. International Tables for Crystallography, Vol. A: Space-Group Symmetry. Reidel, Dordrecht, 2nd edition, 1983.
[71] S. Trasatti and R. Parsons. Interphases in Systems of Conducting Phases. Pure Appl. Chem., 58:437-454, 1986.
[72] T. Cvitaš. Quantities Describing Compositions of Mixtures. Metrologia, 33:35-39, 1996.
[73] H. P. Lehmann, X. Fuentes-Arderiu, and L. F. Bertello. Glossary of Terms in Quantities and Units in Clinical Chemistry. Pure Appl. Chem., 68:957-1000, 1996.
[74] N. G. Connelly, T. Damhus, R. M. Hartshorn, and A. T. Hutton, editors. Nomenclature of Inorganic Chemistry - IUPAC Recommendations 2005. The Royal Society of Chemistry, Cambridge, 2005.
[75] W. H. Koppenol. Names for Muonium and Hydrogen Atoms and their Ions. Pure Appl. Chem., 73:377-380, 2001.
[76] W. H. Powell. Revised Nomenclature for Radicals, Ions, Radical Ions and Related Species. Pure Appl. Chem., 65:1357-1455, 1993.
[77] W. H. Koppenol. Names for Inorganic Radicals. Pure Appl. Chem., 72:437-446, 2000.
[78] J. Brecher. Graphical Representation of Stereochemical Configuration. Pure Appl. Chem., 78:1897-1970, 2006.
[79] G. P. Moss. Basic Terminology of Stereochemistry. Pure Appl. Chem., 68:2193-2222, 1996.
[80] R. A. Alberty. Chemical Equations are Actually Matrix Equations. J. Chem. Educ., 68:984, 1991.
[81] M. B. Ewing, T. H. Lilley, G. M. Olofsson, M. T. Rätzsch, and G. Somsen. Standard Quantities in Chemical Thermodynamics. Fugacities, Activities, and Equilibrium Constants for Pure and Mixed Phases. Pure Appl. Chem., 66:533-552, 1994.
[82] H. Preston-Thomas. The International Temperature Scale of 1990 (ITS-90). Metrologia, 27:3-10, 1990. BIPM "Echelle International de Température" de 1990 (EIT90), ISO 31-4 1992 (E).
[83] R. N. Goldberg and R. D. Weir. Conversion of Temperatures and Thermodynamic Properties to the Basis of the International Temperature Scale of 1990. Pure Appl. Chem., 64:1545-1562, 1992.
[84] F. Pavese. Recalculation on ITS-90 of Accurate Vapour-Pressure Equations for e- $\mathrm{H}_{2}, \mathrm{Ne}, \mathrm{N}_{2}$, $\mathrm{O}_{2}, \mathrm{Ar}, \mathrm{CH}_{4}$, and CO_{2}. J. Chem. Themodynamics, 25:1351-1361, 1993.
[85] The document CCT_05_33 is available at http://www.bipm.org.
[86] E. S. Domalski. Selected Values of Heats of Combustion and Heats of Formation of Organic Compounds Containing the Elements C, H, N, O, P, and S. J. Phys. Chem. Ref. Data, 1:221-277, 1972.
[87] R. D. Freeman. Conversion of Standard (1 atm) Thermodynamic Data to the New StandardState Pressure, 1 bar ($10^{5} \mathrm{~Pa}$). Bull. Chem. Thermodyn., 25:523-530, 1982.
[88] R. D. Freeman. Conversion of Standard (1 atm) Thermodynamic Data to the New StandardState Pressure, 1 bar ($10^{5} \mathrm{~Pa}$). J. Chem. Eng. Data, 29:105-111, 1984.
[89] R. D. Freeman. Conversion of Standard Thermodynamic Data to the New Standard-State Pressure. J. Chem. Educ., 62:681-686, 1985.
[90] I. Tinoco Jr., K. Sauer, and J. C. Wang. Physical Chemistry, 4th edition. Prentice-Hall, New Jersey, 2001.
[91] R. A. Alberty. Recommendations for Nomenclature and Tables in Biochemical Thermodynamics. Pure Appl. Chem., 66:1641-1666, 1994.
[92] D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall. The NBS Tables of Chemical Thermodynamic Properties. J. Phys. Chem. Ref. Data, Vol. 11, Suppl. 2, 1982.
[93] M. W. Chase Jr., C. A. Davies, J. R. Downey Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud. JANAF Thermochemical Tables, 3rd edition. J. Phys. Chem. Ref. Data, Vol. 14, Suppl. 1, 1985.
[94] V. P. Glushko, editor. Termodinamicheskie Svoistva Individualnykh Veshchestv, Vols. 1-4. Nauka, Moscow, 1978-85.
[95] I. Barin, editor. Thermochemical Data of Pure Substances, 3rd edition. VCH, Weinheim, 1995.
[96] M. W. Chase Jr. NIST JANAF Thermochemical Tables, 4th edition. J. Phys. Chem. Ref. Data, Monograph 9, Suppl., 1998.
[97] J. P. Cali and K. N. Marsh. An Annotated Bibliography on Accuracy in Measurement. Pure Appl. Chem., 55:907-930, 1983.
[98] G. Olofsson. Assignment and Presentation of Uncertainties of the Numerical Results of Thermodynamic Measurements. Pure Appl. Chem., 53:1805-1825, 1981.
[99] CODATA Task Group on Data for Chemical Kinetics. The Presentation of Chemical Kinetics Data in the Primary Literature. CODATA Bull., 13:1-7, 1974.
[100] K. J. Laidler. A Glossary of Terms Used in Chemical Kinetics, Including Reaction Dynamics. Pure Appl. Chem., 68:149-192, 1996.
[101] M. L. Goldberger and K. M. Watson. Collision Theory. Krieger, Huntington (NY), 1975.
[102] M. Quack and J. Troe. Statistical Adiabatic Channel Model. In P. von Ragué Schleyer, N. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III, and P. R. Schreiner, editors, Encyclopedia of Computational Chemistry, Vol. 4, pages 2708-2726, Chichester, UK, 1998. John Wiley and Sons.
[103] P. van Rysselberghe. Internationales Komitee für elektrochemische Thermodynamik und Kinetik CITCE. Bericht der Kommission für elektrochemische Nomenklatur und Definitionen. Z. Elektrochem., 58:530-535, 1954.
[104] R. Parsons. Electrode Reaction Orders, Transfer Coefficients and Rate Constants. Amplification of Definitions and Recommendations for Publication of Parameters. Pure Appl. Chem., 52:233-240, 1980.
[105] N. Ibl. Nomenclature for Transport Phenomena in Electrolytic Systems. Pure Appl. Chem., 53:1827-1840, 1981.
[106] S. Trasatti. The Absolute Electrode Potential: An Explanatory Note. Pure Appl. Chem., 58:955-966, 1986.
[107] A. J. Bard, R. Parsons, and J. Jordan, editors. Standard Potentials in Aqueous Solutions. Marcel Dekker Inc., New York, 1985.
[108] G. Gritzner and G. Kreysa. Nomenclature, Symbols, and Definitions in Electrochemical Engineering. Pure Appl. Chem., 65:1009-1020, 1993.
[109] A. J. Bard, R. Memming, and B. Miller. Terminology in Semiconductor Electrochemistry and Photoelectrochemical Energy Conversion. Pure Appl. Chem., 63:569-596, 1991.
[110] K. E. Heusler, D. Landolt, and S. Trasatti. Electrochemical Corrosion Nomenclature. Pure Appl. Chem., 61:19-22, 1989.
[111] M. Sluyters-Rehbach. Impedances of Electrochemical Systems: Terminology, Nomenclature and Representation. Part 1: Cells with Metal Electrodes and Liquid Solutions. Pure Appl. Chem., 66:1831-1891, 1994.
[112] A. V. Delgado, F. González-Caballero, R. J. Hunter, L. K. Koopal, and J. Lyklema. Measurement and Interpretation of Electrokinetic Phenomena. Pure Appl. Chem., 77:1753-1805, 2005.
[113] D. R. Thévenot, K. Toth, R. A. Durst, and G. S. Wilson. Electrochemical Biosensors: Recommended Definitions and Classification. Pure Appl. Chem., 71:2333-2348, 1999.
[114] R. A. Durst, A. J. Bäumner, R. W. Murray, R. P. Buck, and C. P. Andrieux. Chemically Modified Electrodes: Recommended Terminology and Definitions. Pure Appl. Chem., 69:1317-1323, 1997.
[115] T. Cvitas̆ and I. M. Mills. Replacing Gram-Equivalents and Normalities. Chem. Int., 16:123124, 1994.
[116] R. P. Buck, S. Rondinini, A. K. Covington, F. G. K. Baucke, C. M. A. Brett, M. F. Camões, M. J. T. Milton, T. Mussini, R. Naumann, K. W. Pratt, P. Spitzer, and G. S. Wilson. Measurement of pH. Definition, Standards, and Procedures. Pure Appl. Chem., 74:21692200, 2002.
[117] R. G. Bates and E. A. Guggenheim. Report on the Standardization of pH and Related Terminology. Pure Appl. Chem., 1:163-168, 1960.
[118] R. G. Bates, editor. Determination of $p H$ - Theory and Practice. John Wiley, New York, 1973.
[119] P. R. Mussini, T. Mussini, and S. Rondinini. Reference Value Standards and Primary Standards for pH Measurements in $\mathrm{D}_{2} \mathrm{O}$ and Aqueous-Organic Solvent Mixtures: New Accessions and Assessments. Pure Appl. Chem., 69:1007-1014, 1997.
[120] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquérol, and T. Siemieniewska. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem., 57:603-619, 1985.
[121] L. Ter-Minassian-Saraga. Reporting Experimental Pressure-Area Data with Film Balances. Pure Appl. Chem., 57:621-632, 1985.
[122] D. H. Everett. Reporting Data on Adsorption from Solution at the Solid/Solution Interface. Pure Appl. Chem., 58:967-984, 1986.
[123] L. Ter-Minassian-Saraga. Thin Films Including Layers: Terminology in Relation to their Preparation and Characterization. Pure Appl. Chem., 66:1667-1738, 1994.
[124] J. Haber. Manual on Catalyst Characterization. Pure Appl. Chem., 63:1227-1246, 1991.
[125] W. V. Metanomski. Compendium of Macromolecular Nomenclature. Blackwell, Oxford, 1991.
[126] M. A. Van Hove, W. H. Weinberg, and C.-M. Chan. Low-Energy Electron Diffraction: Experiment, Theory, and Surface Structure Determination. Springer, Berlin, 1986.
[127] D. Kind and T. J. Quinn. Metrology: Quo Vadis? Physics Today, 52:13-15, 1999.
[128] I. M. Mills, P. J. Mohr, T. J. Quinn, B. N. Taylor, and E. R. Williams. Redefinition of the Kilogram: A Decision whose Time has come. Metrologia, 42:71-80, 2005.
[129] I. M. Mills. On Defining Base Units in Terms of Fundamental Constants. Mol. Phys., 103:29892999, 2005.
[130] R. Dybkaer. Unit "katal" for Catalytic Activity. Pure Appl. Chem., 73:927-931, 2001.
[131] I. Mills and C. Morfey. On Logarithmic Ratio Quantities and their Units. Metrologia, 42:246252, 2005.
[132] H. G. Jerrard and D. B. McNeill. A Dictionary of Scientific Units. Chapman Hall, London, 3rd edition, 1980.
[133] W.-M. Yao, C. Amsler, D. Asner, R. M. Barnett, J. Beringer, P. R. Burchat, C. D. Carone, C. Caso, O. Dahl, G. D'Ambrosio, A. DeGouvea, M. Doser, S. Eidelman, J. L. Feng, T. Gherghetta, M. Goodman, C. Grab, D. E. Groom, A. Gurtu, K. Hagiwara, K. G. Hayes, J. J. Hernández-Rey, K. Hikasa, H. Jawahery, C. Kolda, Kwon Y., M. L. Mangano, A. V. Manohar, A. Masoni, R. Miquel, K. Mönig, H. Murayama, K. Nakamura, S. Navas, K. A. Olive, L. Pape, C. Patrignani, A. Piepke, G. Punzi, G. Raffelt, J. G. Smith, M. Tanabashi, J. Terning, N. A. Törnqvist, T. G. Trippe, P. Vogel, T. Watari, C. G. Wohl, R. L. Workman, P. A. Zyla, B. Armstrong, G. Harper, V. S. Lugovsky, P. Schaffner, M. Artuso, K. S. Babu, H. R. Band, E. Barberio, M. Battaglia, H. Bichsel, O. Biebel, P. Bloch, E. Blucher, R. N. Cahn, D. Casper, A. Cattai, A. Ceccucci, D. Chakraborty, R. S. Chivukula, G. Cowan, T. Damour, T. DeGrand, K. Desler, M. A. Dobbs, M. Drees, A. Edwards, D. A. Edwards, V. D. Elvira, J. Erler, V. V. Ezhela, W. Fetscher, B. D. Fields, B. Foster, D. Froidevaux, T. K. Gaisser, L. Garren, H.-J. Gerber, G. Gerbier, L. Gibbons, F. J. Gilman, G. F. Giudice, A. V. Gritsan, M. Grünewald, H. E. Haber, C. Hagmann, I. Hinchliffe, A. Höcker, P. Igo-Kemenes, J. D. Jackson, K. F. Johnson, D. Karlen, B. Kayser, D. Kirkby, S. R. Klein, K. Kleinknecht, I. G. Knowles, R. V. Kowalewski, P. Kreitz, B. Krusche, Yu. V. Kuyanov, O. Lahav, P. Langacker, A. Liddle, Z. Ligeti, T. M. Liss, L. Littenberg, L. Liu, K. S. Lugovsky, S. B. Lugovsky, T. Mannel, D. M. Manley, W. J. Marciano, A. D. Martin, D. Milstead, M. Narain, P. Nason, Y. Nir, J. A. Peacock, S. A. Prell, A. Quadt, S. Raby, B. N. Ratcliff, E. A. Razuvaev, B. Renk, P. Richardson, S. Roesler, G. Rolandi, M. T. Ronan, L. J. Rosenberg, C. T. Sachrajda, S. Sarkar, M. Schmitt, O. Schneider, D. Scott, T. Sjöstrand, G. F. Smoot, P. Sokolsky, S. Spanier, H. Spieler, A. Stahl, T. Stanev, R. E. Streitmatter, T. Sumiyoshi, N. P. Tkachenko, G. H. Trilling, G. Valencia, K. van Bibber, M. G. Vincter, D. R. Ward, B. R. Webber, J. D. Wells, M. Whalley, L. Wolfenstein, J. Womersley, C. L. Woody, A. Yamamoto, O. V. Zenin, J. Zhang, and R.-Y. Zhu. Review of Particle Physics, Particle Data Group. J. Phys., G33:11232, 2006. The Particle Data Group website is http://pdg.lbl.gov.
[134] P. Seyfried and P. Becker. The Role of N_{A} in the SI: An Atomic Path to the Kilogram. Metrologia, 31:167-172, 1994.
[135] N. E. Holden. Atomic Weights of the Elements 1979. Pure Appl. Chem., 52:2349-2384, 1980.
[136] P. De Bièvre and H. S. Peiser. 'Atomic Weight' - The Name, its History, Definition, and Units. Pure Appl. Chem., 64:1535-1543, 1992.
[137] H. S. Peiser, N. E. Holden, P. De Bièvre, I. L. Barnes, R. Hagemann, J. R. de Laeter, T. J. Murphy, E. Roth, M. Shima, and H. G. Thode. Element by Element Review of their Atomic Weights. Pure Appl. Chem., 56:695-768, 1984.
[138] K. J. R. Rosman and P. D. P. Taylor. Inorganic Chemistry Division, Commission on Atomic Weights and Isotopic Abundances, Subcommittee for Isotopic Abundance Measurements. Isotopic Compositions of the Elements 1997. Pure Appl. Chem., 70:217-235, 1998.
[139] M. E. Wieser. Inorganic Chemistry Division, Commission on Isotopic Abundances and Atomic Weights. Atomic Weights of the Elements 2005. Pure Appl. Chem., 78:2051-2066, 2006.
[140] W. C. Martin and W. L. Wiese. Atomic Spectroscopy. In G. W. F. Drake, editor, Atomic, Molecular, and Optical Physics Reference Book. American Institute of Physics, 1995.
[141] J. Corish and G. M. Rosenblatt. Name and Symbol of the Element with Atomic Number 110. Pure Appl. Chem., 75:1613-1615, 2003.
[142] J. Corish and G. M. Rosenblatt. Name and Symbol of the Element with Atomic Number 111. Pure Appl. Chem., 76:2101-2103, 2004.
[143] T. B. Coplen and H. S. Peiser. History of the Recommended Atomic-Weight Values from 1882 to 1997: A Comparison of Differences from Current Values to the Estimated Uncertainties of Earlier Values. Pure Appl. Chem., 70:237-257, 1998.
[144] G. Audi, O. Bersillon, J. Blachot, and A. H. Wapstra. The Nubase Evaluation of Nuclear and Decay Properties. Nucl. Phys. A, 729:3-128, 2003.
[145] A. H. Wapstra, G. Audi, and C. Thibault. The Ame2003 Atomic Mass Evaluation. (I). Evaluation of Input Data, Adjustment Procedures. Nucl. Phys. A, 729:129-336, 2003.
[146] G. Audi, A. H. Wapstra, and C. Thibault. The Ame2003 Atomic Mass Evaluation. (II). Tables, Graphs and References. Nucl. Phys. A, 729:337-676, 2003.
[147] J. K. Böhlke, J. R. de Laeter, P. de Bièvre, H. Hidaka, H. S. Peiser, K. J. R. Rosman, and P. D. P. Taylor. Inorganic Chemistry Division, Commission on Atomic Weights and Isotopic Abundances. Isotopic Compositions of the Elements, 2001. J. Phys. Chem. Ref. Data, 34:5767, 2005.
[148] G. Audi and A. H. Wapstra. The 1993 Atomic Mass Evaluation. I. Atomic Mass Table. Nucl. Phys. A, 565:1-65, 1993.
[149] J. R. de Laeter, J. K. Böhlke, P. de Bièvre, H. Hidaka, H. S. Peiser, K. J. R. Rosman, and P. D. P. Taylor. Inorganic Chemistry Division, Commission on Atomic Weights and Isotopic Abundances. Atomic Weights of the Elements: Review 2000. Pure Appl. Chem., 75:683-800, 2003.
[150] T. B. Coplen, J. K. Böhlke, P. De Bièvre, T. Ding, N. E. Holden, J. A. Hopple, H. R. Krouse, A. Lamberty, H. S. Peiser, K. Révész, S. E. Rieder, K. J. R. Rosman, E. Roth, P. D. P. Taylor, R. D. Vocke Jr., and Y. K. Xiao. Inorganic Chemistry Division, Commission on Atomic Weights and Isotopic Abundances, Subcommittee on Natural Isotopic Fractionation. Isotope-Abundance Variations of Selected Elements. Pure Appl. Chem., 74:1987-2017, 2002.
[151] N. J. Stone. Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments. Atomic Data and Nuclear Data Tables, 90:75-176, 2005.
[152] B. J. Jaramillo and R. Holdaway. The Astronomical Almanac for the Year 2003. U.S. Government Printing Office, Washington, 2003.
[153] R. T. Birge. On Electric and Magnetic Units and Dimensions. The American Physics Teacher, 2:41-48, 1934.
[154] J. D. Jackson. Classical Electrodynamics, 2nd edition. John Wiley, New York, 1975.
[155] E. A. Guggenheim. Names of Electrical Units. Nature, 148:751, 1941.
[156] D. R. Lide Jr. Use of Abbreviations in the Chemical Literature. Pure Appl. Chem., 52:22292232, 1980.
[157] H. Q. Porter and D. W. Turner. A Descriptive Classification of the Electron Spectroscopies. Pure Appl. Chem., 59:1343-1406, 1987.
[158] N. Sheppard. English-Derived Abbreviations for Experimental Techniques in Surface Science and Chemical Spectroscopy. Pure Appl. Chem., 63:887-893, 1991.
[159] D. A. W. Wendisch. Acronyms and Abbreviations in Molecular Spectroscopy. Springer, Heidelberg, 1990.

11 GREEK ALPHABET

Roman	Italics	Name	Pronounciation and Latin Equivalent	Notes
A, α	A, α	alpha	A	
B, β	B, β	beta	B	
Γ, γ	Γ, γ	gamma	G	
Δ, δ	Δ, δ	delta	D	
E, ε	E, ε, ϵ	epsilon	E	
Z, ζ	Z, ζ	zeta	Z	
H, η	H, η	eta	Ae, Ä, Ee	1
$\Theta, \vartheta, \theta$	$\Theta, \vartheta, \theta$	theta	Th	2
I, ı	I, ι	iota	I	
K, χ, κ	K, χ, κ	kappa	K	2
Λ, λ	Λ, λ	lambda	L	
M, μ	M, μ	mu, (my)	M	
$\mathrm{N}, \stackrel{ }{ }$	N, ν	nu, (ny)	N	
Ξ, ξ	Ξ, ξ	xi	X	
O, o	O, o	omikron	O	
Π, π	Π, π	pi	P	
P, p	P, ρ	rho	R	
$\Sigma, \sigma, \varsigma$	$\Sigma, \sigma, \varsigma$	sigma	S	2, 3
T, τ	T, τ	tau	T	
Y, u	Y, u	upsilon, ypsilon	U, Y	
Φ, φ, ϕ	Φ, φ, ϕ	phi	Ph	2
X, χ	X, χ	chi	Ch	
Ψ, ψ	Ψ, ψ	psi	Ps	
Ω, ω	Ω, ω	omega	Oo	

(1) For the Latin equivalent Ae is to be pronounced as the German A . The modern Greek pronounciation of the letter η is like E , long ee as in cheese, or short i as in lips. The Latin equivalent is also often called "long E".
(2) For the lower case letters theta, kappa, sigma and phi there are two variants in each case. For instance, the second variant of the lower case theta is sometimes called "vartheta" in printing.
(3) The second variant for lower case sigma is used in Greek only at the end of the word.
(4) In contrast to omikron (short o) the letter omega is pronounced like a long o.

12 INDEX OF SYMBOLS

This index lists symbols for physical quantities, units, some selected mathematical operators, states of aggregation, processes, and particles. Symbols for chemical elements are given in Section 6.2, p. 117. Qualifying subscripts and superscripts, etc., are generally omitted from this index, so that for example E_{p} for potential energy, and $E_{\text {ea }}$ for electron affinity are both indexed under E for energy. The Latin alphabet is indexed ahead of the Greek alphabet, lower case letters ahead of upper case, bold ahead of italic, ahead of Roman, and single letter symbols ahead of multiletter ones. When more than one page reference is given, bold print is used to indicate the general (defining) reference. Numerical entries for the corresponding quantities are underlined.

a	acceleration, 13, 90, 137	$A_{\text {H }}$	Hall coefficient, 43
a	fundamental translation vector, 42, 79, 80	Al	Alfvén number, 82
a^{*}	reciprocal lattice vector, 42, 80	A_{r}	relative atomic mass, 47,117
a	absorption coefficient, 6, 36, 37, 40, 41	A	ampere (SI unit), 4, 86, 87, 139, 143
a	activity, 57-59, $70,71,72,74,75$	A	base-centred (crystal lattice), 44
a	area per molecule, 77, 78	A	symmetry label, 31-33, 51
a	Hermann-Mauguin symbol, 44	A	ångström (unit of length), 24, 27, 131, 135
a	hyperfine coupling constant, 27		
a	specific surface area, 77	b	Burgers vector, 42
a	thermal diffusivity, 81	b	fundamental translation vector, 42, 79, 80
a	unit cell length, 42	b^{*}	reciprocal lattice vector, 42, 80
a	van der Waals coefficient, 57	b	breadth, 13
a_{0}	bohr (unit of length), 135	b	Hermann-Mauguin symbol, 44
a_{0}	Bohr radius, 9, 18, 20, 22, 24, 26, 95, 96, 111, 132. 135, 145	$\begin{aligned} & b \\ & b \end{aligned}$	impact parameter, 65 mobility ratio, 43
a	adsorbed (subscript), 59	b	molality, 48, 49, 59, 62, 70, 75, 133
a	are (unit of area), 136	b	Tafel slope, 72
a	atom, 22, 24		unit cell length, 42
a	atto (SI prefix), 91		van der Waals coefficient, 57
a	symmetry label, 32, 33		Wang asymmetry parameter, 25
a	year (unit of time), 24, 137	b	barn (unit of area), 121, 136
am	amorphous solid, 54, 55	b	symmetry label, 32,33
aq	aqueous solution, $\mathbf{5 4}, 55,57,73$,	bar	bar (unit of pressure), 48, 62, 131, 138
at	atomization (subscript), 59, 61		
abs ads, a	absorbed (subscript), 34 adsorption (subscript), 54, 59	B	magnetic flux density (magnetic induction), 17, 27, 81, 82, 141, 146-148
app	apparent (superscript), 60	B	Debye-Waller factor, 42
atm amagat	atmosphere, 40, 62, 131, 138 amagat unit, 139	B	Einstein coefficient, Einstein transition probability, 35, 37, 39
		B	napierian absorbance, 36, 37
A	conservation matrix, formula matrix, 53	B	retarded van der Waals constant, 77
A	magnetic vector potential, 17, 146-148	B	rotational constant, 25-27
A	absorbance, 5, 36, 37, 39, 40	B	second virial coefficient, 57
A	electron affinity, 22	B	susceptance, 17
A	integrated absorption coefficient, 37-41	B	base-centred (crystal lattice), 44
A	activity (radioactive), 24, 89, 139	B	bel (unit of power level), 92, 99
A, \mathcal{A}	affinity of reaction, 58, 61	Bi	biot (unit of electric current), 135, 139, 144
A	area, 13, 14-17, 24, 34-36, 48, 49, 56, 71,	Bq	becquerel (SI unit), 89, 139
	$72,77,78,81,90,136,146$	Btu	British thermal unit (unit of energy), 137
A	Einstein coefficient, Einstein transition probability, 35, 37, 39	c	fundamental translation vector, 42
A	Helmholtz energy, 56, 57, 78	c	velocity, 13, 45, 90, 148
A	hyperfine coupling constant, 27	c^{*}	reciprocal lattice vector, 42, 80
A	nucleon number, mass number, 22, 49, 121	c	amount concentration, 4, 37, 38, 48, 54, 58,
A	pre-exponential factor, 63, 64		59, 62-67, 70, 72, 81, 82, 90, 131
A	rotational constant, 25-27	c	Hermann-Mauguin symbol, 44
A	spin-orbit coupling constant, 25	c	specific heat capacity (constant pressure),
A	van der Waals-Hamaker constant, 77		6, 81, 82

deg degree (unit of plane angle), 92, $\underline{136}$
dil dilution (subscript), 59
dpl displacement (subscript), 59
dyn dyne (unit of force), 27, 134, 137, 144
D dipolar interaction tensor, 28
D electric displacement, 16, 141, 145, 146, f -148
speed, 13, 64, 81, 90, 93, 95
unit cell length, 42
speed of light in medium, 34 ,
speed of light in vacuum, $9,13,16,22$,
$23,25,34-39,41,43,95,111,112$, 131, 134, 143, 145-148
first radiation constant, 36, $\underline{112}$
second radiation constant, 36,112
centered superlattice, 79
centi (SI prefix), 91
combustion (subscript), 59, 61
symmetry label, 32
candela (SI unit), 34, 86, 88
condensed phase, 40, 41, 48, 54, 58
crystalline, 54, 55, 61
calorie (unit of energy), 58, 137
critical coagulation concentration, 78
spin-rotation interaction tensor, 28
capacitance, 16, 140, 146
heat capacity, $5,6,8,43,55-57$, 90, 138
integrated absorption coefficient (condensed phase), 41
number concentration, number density, 43, 45, 48, 63-65, 68, 69, 81
rotational constant, 25-27
third virial coefficient, 57
vibrational force constant, 27
n-fold rotation symmetry operator, 31, 32
Cowling number, 82
base-centred (crystal lattice), 44
coulomb (SI unit), 89, 134, 139
curie (unit of radioactivity), $\underline{139}$
clausius (unit of entropy), 138
degree Celsius (SI unit), 56, 89, 138
centrifugal distortion constant, 25
collision diameter, 64
degeneracy, statistical weight, 26, 39, 45
diameter, distance, thickness, 13, 15, 146
lattice plane spacing, 42
relative density, 14
day (unit of time), 92, 136, 137
deci (SI prefix), 91
deuteron, 50, 115
deca (SI prefix), 91
decibel, see bel (unit of power level), 92, 99
absorbed dose of radiation, $\underline{139}$
centrifugal dstortion constant, 25
Debye-Waller factor, 42
diffusion coefficient, 43, 44, 72, 81, 90
dissociation energy, 22, 96
thermal diffusion coefficient, 81
dipolar coupling constant, 28
debye (unit of electric dipole moment), 26, 39, 141
dalton (unit of mass), $9,22,47, \mathbf{9 2}, 94$, $\underline{136}$
unit vector, 13, 81
elementary charge, $9,18-20,22-24,26,29$,
37, 43, 70, 92, 94-96, 111, 139, 145
étendue, 35, 36
linear strain, 15
base of natural logarithm, 8, 99, 103, 106, 112
electron, $8, \mathbf{5 0}, 115$
symmetry label, 33
electronvolt (unit of energy) 9, 92, 94, 132, 137
erg (unit of energy), 134, 135, 137, 138, 142, 144
entropy unit, 139
electric field strength, $7,16,24,26,40,43,73$, $90,104,134,140,146,148$
activation energy, threshold energy, 64, 66, 67
cell potential, 71, 74, 75
electric potential difference, 16, 44, 74
electromotive force, cell potential, 16, 89
energy, $5,14,15,17,19-23,32,33,39,43,45$, $56,65,67,95,132,137,140,146$,
147, 237
étendue, 35, 36
identity symmetry operator, 31
irradiance, 35, 90
modulus of elasticity, 15
potential (electrochemistry), 71, 72, 76
scattering amplitude, 42
thermoelectric force, 43, 44
space-fixed inversion symmetry operator, 31
Hartree energy, 9, 18, 20, 22, 95, 96, 111, 132, 137, 139, 145, 147
Euler number, 82
expectation value of $x, 151$
exa (SI prefix), 91
excess quantity (superscript), 60
symmetry label, 31,32
exabinary (prefix for binary), 91
$f \quad$ activity coefficient, 59, 61, 70, 75
$f \quad$ atomic scattering factor, 42
f finesse, 36
f frequency, 13, 28, 29, 34-36, 41, 68, 81,

	$82,88,89,129$	G
f	friction factor, 15	G
f	fugacity, 58, 74	G
f	oscillator strength, 37	G
f	vibrational force constant, 27	G_{F}
$f\left(c_{x}\right)$	velocity distribution function, 45	$G r$
f	femto (SI prefix), 91	G
f	fermi (unit of length), 135	
f	formation reaction (subscript), 60, 61	G
f	fluid phase, 54	Gi
ft	foot (unit of length), 135	Gy
fus	fusion, melting (subscript), 60	Gal
F	Fock operator, 20, 21	h
F	force, $7, \mathbf{1 4}-17,87,89,95,104,137,138$, 143, 144, 146-148	h
F	angular momentum, 30	h
F	Faraday constant, 70-75, $\underline{111}$	h, \hbar
F	fluence, 35	
F	frequency, 28	
F	Helmholtz energy, 56	h
F	rotational term, 25	h
F	structure factor, 42	h
F	vibrational force constant, 27	ha
$F(c)$	speed distribution function, 45	hp
Fo	Fourier number (mass transfer), 82	hk
Fr	Froude number, 82	
F	face-centred (crystal lattice), 44	H
F	farad (SI unit), 89, 140	
F	symmetry label, 31	H
${ }^{\circ} \mathrm{F}$	degree Fahrenheit (unit of temperature), $\underline{138}$	H H
Fr	franklin (unit of electric charge), 134, 135, $\underline{139}, 144$	H H
g	reciprocal lattice vector, 80	Ha
g	acceleration of free fall, $13, \mathbf{7 8}, 81,82$, $\underline{112}, 137$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
g	degeneracy, statistical weight, $26,39,45$	Hz
g	(spectral) density of vibrational modes, 43	
g, g_{e}	g-factor, $23, \mathbf{2 7}, 28,111$	i
g	vibrational anharmonicity constant, 25	i
g	gas, 54, 61, 73	
g	gram (unit of mass), 91, 136	i
g	gerade symmetry label, 32, 33	1
gr	grain (unit of mass), 136	id
gal	gallon (unit of volume), 136	in
gon	gon (unit of angle), 136	ir
G	reciprocal lattice vector, 42, 80	iep
G	(electric) conductance, 17, 89	
G	Gibbs energy, 5, 6, 56-58, 60, 61, 65, 66, 71, 74, 77	I
G	gravitational constant, 14, $\underline{112}$	I
G	integrated (net) absorption cross section, 37-40	I

shear modulus, 15
thermal conductance, 81
vibrational term, 25
weight, 14
Fermi coupling constant, $\underline{111}$
Grashof number (mass transfer), 82
gauss (unit of magnetic flux density),
27, 141, 142
giga (SI prefix), 91
gigabinary (prefix for binary), 91
gray (SI unit), 89, 139
gal (unit of acceleration), 137
coefficient of heat transfer, 81, 82
film thickness, 77
height, 13
Miller index, 44, 79, 80
Planck constant ($\hbar=h / 2 \pi$), $7,9,18,20$, 22, 23, 25, 28-30, 34-36, 38, 39, 41-43, $45,65-68,95,96,111,112,131,132,145$
hecto (SI prefix), 91
helion, 50, 115
hour (unit of time), 92, 137
hectare (unit of area), 136
horse power (unit of power), 138
metric horse power (unit of power), 138
magnetic field strength, 17, $90,142,145$, 147, 148
coulomb integral, resonance integral, 19
dose equivalent, 139
enthalpy, 5, 6, 8, 55-58, 60, 65, 66
fluence, 35
Hamilton function, hamiltonian, 14, 18, 20, 21
Hartmann number, 82
Heaviside function, 45, 66, 67, 107
henry (SI unit), 89, 142
hertz (SI unit), 6, 13, 29, 88, 89
unit vector, 13
electric current, 16, 72, 85, 86, 95, 139, 143, 144
inversion symmetry operator, 31,32
square root of $-1,18,32,42,43,98,103, \mathbf{1 0 7}$
ideal (superscript), 60
inch (unit of length), 135,138
irrational (superscript), 145, see non-rationalized
immersion (subscript), 60
isoelectric point, 78
nuclear spin angular momentum, 23, 27-30, 121
differential cross section, 65
electric current, $4, \mathbf{1 6}, 17,72,85,86,95$, $139,143,146,147$
intensity, 4, 34-37, 85, 86, 88
kp kilopond (unit of force), $\underline{137}$
kat katal, 89
kilogram-force (unit of force), $\underline{137}$
$\boldsymbol{K} \quad$ exchange operator, $\mathbf{2 0}, 21$
$K \quad$ rate (coefficient) matrix, 66, 67
$K \quad$ angular momentum quantum number (component), 30, 31, 33
$K \quad$ bulk modulus, 15
$K \quad$ coefficient of heat transfer, 81
ionic strength, 59, 70, 76
ionization energy, 22
moment of inertia, 14, 25
body-centred (crystal lattice), 44
internal vibrational angular momentum, 30 K
electric current density, 16-18, 43, 72, 73, 90, 146-148
particle flux density, 43, 44
unit vector, 13

Miller index, 44, 79, 80
rate coefficient, rate constant, 63-69, 72
thermal conductivity, 81, 82, 90
mass transfer coefficient, 72, 81, 82
equilibrium constant, 58, 59, 61
exchange integral, 20

K
internal vibrational angular momentum, 30
cavity spacing, path length, 36,37
length, $4, \mathbf{1 3}, 20,42,45,53,81,82,85-87$, 103, 131, 135, 136, 143-145, 147
mean free path, 43,44
Miller index, 44, 79, 80
vibrational quantum number, 26, 30
liquid, 54, 55, 61
litre (unit of volume), $6,92, \underline{136}$
pound (unit of mass), 136
liquid crystal, 54
lumen (SI unit), 89
lux (SI unit), 89
light year (unit of length), $\underline{136}$
litre atmosphere (unit of energy), $\underline{137}$
angular momentum, 14, 25, 30, 32, 138
Avogadro constant, 9, 45, 47, 53, 65, 68, 78, 111, 112, 132
angular momentum quantum number, 30, 32
Debye length, 77
diffusion length, 49
field level, power level, 98, 99
inductance, 17, 89, 142, 147
Lagrangian function, Lagrangian, 14, 45
length, $3,4,6,13,20,42,45,53,81$, 85-87, 92, 94, 95, 131, 135, 136, 143-145, 147
Lorenz coefficient, 43
radiance, 35
term symbol, 117-120
Lewis number, 82
langmuir (unit of pressure-time product), 81
litre (unit of volume), $6, \mathbf{9 2}, \underline{136}$
magnetic dipole moment, 17, 23, 95, 121, 133, 142, 147
angular momentum quantum number (component), 28, 30
effective mass, 43
electric mobility, 73
mass, $4,6,7,9,14,18,22,28,45,47,48$, $64,77,81,92,93,111,115,116$, $133,136,143,144$
Hermann-Mauguin symbol, 44
molality, 48, 49, 58, 59, 62, 70, 75, 133
$m_{\mathrm{u}} \quad$ atomic mass constant, 22, 47, 94, 111, 117
$m_{\mathrm{n}} \quad$ neutron mass, 111
$m_{\mathrm{p}} \quad$ proton mass, $29, \underline{111}$
$m_{\mathrm{W}} \quad$ W-boson mass, 111
$m_{\mathrm{Z}} \quad$ Z-boson mass, 111
m
metre (SI unit), 3, 6, 26, 29, 40, 53, 86, 87, 135, 143
milli (SI prefix), 91
mile (unit of length), 135
minute (unit of time), $\mathbf{9 2}, \underline{137}$
mixing (subscript), 60
mole (SI unit), 4, 6, 40, 43, 47, 53, 59, 86, 88, 98
monomeric form, 54
millimetre of mercury (unit of pressure),
N_{E}
$N u$
N_{ω} 138
$\boldsymbol{M} \quad$ magnetization, $\mathbf{1 7}, 28,142,147 \quad \boldsymbol{p}$
M
torque, 14
transition dipole moment, 26
angular momentum quantum number (component), 30
matrix for superlattice notation, 79, 80
$M \quad$ molar mass, 47,54,59, 117, 133
$M_{\mathrm{u}} \quad$ molar mass constant, 47, 117
$M \quad$ mutual inductance, 17
$M \quad$ radiant excitance, $\mathbf{3 4}, 35$
$\mathcal{M} \quad$ Madelung constant, 43
$M_{\mathrm{r}} \quad$ relative molecular mass, 47
Ma Mach number, 82
M mega (SI prefix), 91
M
M
Mi
Mx
n
nautical mile (unit of length), 92
molar (unit of concentration), 48, 49
megabinary (prefix for binary), 91
maxwell (unit of magnetic flux), 142
amount of substance, chemical amount, $4-7,45,47,48,51,53,56,63,71,77$, $78,85,86,88,89$
charge number of cell reaction, 71, 72
number density, number concentration,
$43-45,48,49,53,54,67,71,81,133$
number of electrons, 20
order of (Bragg) reflection, 42
order of reaction, $63, \mathbf{6 6}, 72$
principal quantum number, 23
refractive index, 34, 37, 40, 41
nano (SI prefix), 91
nematic phase, 54
neutron, $8,22, \mathbf{5 0}, \underline{115}$
angular momentum, 30
neutron number, 22, 24

P
P
number of entities, $6,24,42, \mathbf{4 5}, 47,77$, 78,89
number of events, 13,35
number of measurements, 151
number of states, 44, 45, 66, 67
Avogadro constant, $9,17,37,41,43,45$, $47,53,92,111,112,117,133$
density of states, $43,45,66,67$
Nusselt number (mass transfer), 82
(spectral) density of vibrational modes, 43, 44
newton (SI unit), 89, 137
nucleus, 22
neper, $8, \mathbf{9 2}, 98,99$
ounce (unit of mass), 136
oerstedt (unit of magnetic field strength), 142
electric dipole moment, $17,23,26,39,41$, $95,134,141,146$
momentum, 14, 18, 45
bond order, 19, 21
fractional population, 38, 39, 46
number density, number concentration, 43, 44
permutation symmetry operator, 31
pressure, $3,5-8, \mathbf{1 4}, 15,37-39,48,54$, $56-58,61-63,72,77,81,82,89,99,131,138$
probability, 45
permutation-inversion symmetry operator, 31
pico (SI prefix), 91
primitive superlattice, 79
proton, $8,22,50, \underline{115}$
parsec (unit of length), 136
$\mathrm{pH}, 5,70, \mathbf{7 5}, 76$
polymeric form, 54
part per billion, 98
part per hundred, 98
part per million, 98
part per quadrillion, 98
part per thousand, part per trillion, 98
pounds per square inch (unit of pressure), 138
pzc point of zero charge, 78
pphm part per hundred million, 98
$P \quad$ density matrix, 21, 46
$P \quad$ dielectric polarization, 16, 40, 146
$P \quad$ heat flux, thermal power, $\mathbf{5 7}, \mathbf{8 1}$
$P \quad$ pressure, 14, 39, 48, 58, 81, 89, 131, 138
$P \quad$ probability, 45, 46, 65, 153, 154

P	probability density, 18, $\mathbf{1 5 1}$	R	particle position vector, 42
P	radiant power, 34-36	R	transition dipole moment, 26
P	sound energy flux, 15	R	electric resistance, 17, 89, 140
P	transition probability, 65	R	gas constant, $7,38,45,46,54,57-59,61$,
P	(volume) polarization, 141		$62,64,65,71,72,74,75, \underline{111}$
P	weight, 14	$R_{\text {H }}$	Hall coefficient, 43
P^{*}	permutation-inversion symmetry operator 31	R R	internal vibrational coordinate, 27 molar refraction 37
Pe	Péclet number (mass transfer), 82	R	position vector, 42, 43
Pr	Prandtl number, 82	R	reflectance, 36
P	peta (SI prefix), 91	R	resolving power, 36
P	poise (unit of dynamic viscosity), $\underline{138}$	R_{∞}	Rydberg constant, 22, 23, 111
P	primitive (crystal lattice), 44	R	thermal resistance, 81
P	symmetry label, 51	$R a$	Rayleigh number, 82
Pa	pascal (SI unit), 40, 48, 62, 89, 138	$R e$	Reynolds number, 5, 82
Pi	petabinary (prefix for binary), 91	$\begin{aligned} & R m, R_{m} \\ & \mathrm{R} \end{aligned}$	magnetic Reynolds number, 82 rhombohedral (crystal lattice), 44
q	electric field gradient, 24, 29, 141	R	röntgen (unit of exposure), 139
q	angular wave vector, 42, 43	Ry	rydberg (unit of energy), 137
$q_{\text {D }}$	Debye angular wavenumber, 43	${ }^{\circ} \mathrm{R}$	degree Rankine (unit of thermodynamic
q	charge density, 16, 18, 23, 43, 44, 140		temperature), 138
q	charge order, 19		
q	flux of mass, 81	s	electron spin angular momentum, 30
q	generalized coordinate, 13, 14, 45	s	length of path, length of arc, 13
q	heat, 56, 73, 89	s	order parameter, 42
q	partition function, 39, 45, 46, 66, 67		sedimentation coefficient, 13, 77
q	vibrationa normal coordinate, 27		solubility, 48, 49 standard deviation, 151, 152
Q	quadrupole moment, $23, \mathbf{2 4}, 28,29,141$		symmetry number, 46
Q	disintegration energy, 24	s^{2}	variance, 151, 152
Q	electric charge, $4, \mathbf{1 6}, 17,50,70-72,89$, $95,134,139,143,145,146,148$		$\begin{aligned} & \text { second (SI unit), } 6,29,30,34,86,87,92 \text {, } \\ & \quad 98,137,143,144 \end{aligned}$
Q_{W}	electroweak charge, 24	S	solid, 54, 73
Q	heat, 56, 57, 73, 81, 89	Sr	steradian (SI unit), 13, 89
Q	partition function, 39, 45, 46, 6	sln	solution, 54
Q	quality factor, 36	sol	solution (subscript), 60
Q	radiant energy, 34	sub	sublimation (subscript), 60
Q	reaction quotient, 58, 61		
Q	vibrational normal coordinate, 27	S	Poynting vector, 17, 148
Q	Q-branch label, 33	$\begin{aligned} & S \\ & S \end{aligned}$	probability current density, 18 scattering matrix, 65
r	position vector, $\mathbf{1 3}, 16,23,42,45,95$, $104,143,145,146$	S	electron spin angular momentum, 25, $27, \mathbf{3 0}, 32$
r	interatomic distance, 27, 28, 96	S	nuclear spin operator, 28, 29
r	internal vibrational coordinate, 27	S	integrated absorption coefficient, 37, 39,
r	radius, 13, 64, 70		40
r	rate of concentration change, 63	S	action, 14
r	spherical coordinate, 13, 18, 20, 21, 96	S	area, 13, 24, 34, 36, 78, 81, 90, 136
r	reaction (subscript), 60	S	entropy, 5, 55-58, 60, 61, 63, 65, 66, 78,
rad	rad (unit of radiation dose), 139		90, 138, 139
rad	radian (SI unit), $8,13,29,89,98, \underline{136}$	S	overlap integral, 19, 21
rem	rem (unit of dose equivalent), 139	S	statistical entropy, 46
refl	reflected (subscript), 34	S	vibrational symmetry coordinate, 27
		Sc	Schmidt number, 82
R	lattice vector, 42	Sh	Sherwood number, 82
R	nuclear orbital angular momentum, 30	S_{n}	rotation-reflection symmetry operator, 31

Sr	Strouhal number, 82	U
St	Stanton number (mass transfer), 82	U
S	siemens (SI unit), 89, 132	U
St	stokes (unit of kinematic viscosity), 138	
Sv	sievert (SI unit), 89, 139	v
Sv	svedberg (unit of time), $\underline{137}$	v
t	Celsius temperature, $38,46,56,89,111$, 138	v
t	film thickness, thickness of layer, 77	v
t	$\begin{aligned} & \text { time, } 4,8, \mathbf{1 3}, 15,16,24,29,34-36,57 \\ & \quad 63,66-69,72,81,82,85-87,92,95 \\ & 98,137,143,144 \end{aligned}$	it
t	transport number, 73	
$t_{1 / 2}$	half life, 24, 64, 116	V
t	tonne (unit of mass), 92, 136	V
t	triton, 50, 115, 116	V
tr	transmitted (subscript), 34	
tr	triple point (subscript), 60	
trs	transition (subscript), 60	V
T	hyperfine coupling constant (tensor), 27	w
T	torque, 14	w
T_{C}	Curie temperature, 43	w
T	kinetic energy, 14, 18, 93, 94	w
T_{N}	Néel temperature, 43	
T	period, characteristic time interval, 13	w
T	relaxation time, 13, 23, 29, 43	
T	$\begin{aligned} & \text { thermodynamic temperature, } 3,4,6,7 \text {, } \\ & \quad 35,37,39,40,43,46,54,56-59,61,62 \text {, } \\ & 64-67,71,72,74,75,77,81,82,87, \\ & 89,133, \underline{138} \end{aligned}$	$\begin{aligned} & W \\ & W \\ & W \end{aligned}$
T	total term, electronic term, 25, 131	W
T	transmittance, 36	W
$T_{1 / 2}$	half life, 24, 64, 116	We
T	tera (SI prefix), 91	W
T	tesla (SI unit), 27, 89, $\underline{141}$	W
Ti	terabinary (prefix for binary), 91	Wb
Torr	torr (unit of pressure), 81, 131, $\underline{138}$	
u	displacement vector, 42	x x
u	velocity, 13, 45, 90, 148	x
u	Bloch function, 43	\bar{x}
u	electric mobility, 73	x
u	estimated standard uncertainty, 151-154	
u	lattice direction index, 44	x
u	speed, 13, 81, 90, 93, 95	
u	ungerade symmetry label, 32, 33	X
u	unified atomic mass unit, $9,22,47, \mathbf{9 2}$, $94,111,112,116,117,121,136$	X
ua	astronomical unit (unit of length), 9, 92, $\underline{94}, 136$	y y y
U	cell potential, 71	y
U	electric potential difference, 16, 17, 44, 74	yd
U	electrode potential, 71	

expanded uncertainty, 151-154
internal energy, 55-57, 61, 65
"enzyme unit", 89
velocity, 13-16, 43, 45, 73, 90, 148
lattice direction index, 44
rate of reaction, $\mathbf{6 3}, 64,68,69$
specific volume, volume, 6, 13, 14, 90
speed, 13, 81, 82, 93, 95
vibrational quantum number, $\mathbf{2 5}, 26,33$, 51
vaporization (subscript), 60
vitreous substance, 54
electric potential, 16, 75, 89, 140
potential energy, 14, 18, 23, 27, 29, 66, 96
volume, $5-8,13-17,23,34,37,41,43,45$, $47,48,54-57,63,65,66,81,90,92,111$, 133, 136. 139, 146, 147
volt (SI unit), 9, 89, 94, 134, $\underline{140}$
velocity, 13, 90, 148
lattice direction index, 44
mass fraction, 47, 49, 97, 98
radiant energy density, 34
speed, 13, 81, 90, 93, 95
work, 14, 56, 70, 89
degeneracy, statistical weight, 26, 45
number of open adiabatic channels, 66, 67
number of states, $\mathbf{4 5}, 66,67$
radiant energy, 34, 36
weight, 14
work, 14, 56, 70, 89
Weber number, 82
watt (SI unit), 34, 88, 89, 138
W-boson, 111, 115
weber (SI unit), 89, $\underline{142}$
cartesian coordinate, 13, 18, 21
energy parameter, 19
fractional coordinate, 42
mean, 151
mole fraction, amount fraction, 48, 58, 59, $62,81,97,121,133$
vibrational anharmonicity constant, 25
reactance, 17
x unit, $\underline{135}$
cartesian coordinate, 13, 18, 21
fractional coordinate, 42
mole fraction (gas), 48, 61
yocto (SI prefix), 91
yard (unit of length), 135
$\alpha_{p} \quad$ relative pressure coefficient, 56
admittance (complex), 17
Planck function, 56
spherical harmonic function, 18, 21
yotta (SI prefix), 91
yottabinary (prefix for binary), 91
cartesian coordinate, 13, 15, 18, 21
charge number, 20, 43, 49-51, 59, 70-74, collision frequency, collision
frequency factor, 64,65
cylindrical coordinate, 13
fractional coordinate, 42
partition function, $39,45,46,67$
zepto (SI prefix), 91
collision density, collision number, 65
compression factor, 57
impedance, 17, 70, $\underline{111}$
partition function, $39,45,46,67$
proton number, atomic number, 20, 22-24

$$
49,121
$$

Z-boson, 111, 115
zetta (SI prefix), 91
zettabinary (binary prefix), 91
electric polarizability, 24, 95, 146
absorptance, 36, 37
absorption coefficient, 6, 36-38, 41
acoustic factor (absorption), 15
angle of optical rotation, 37, 38
coefficient of heat transfer, 81
coulomb integral, 19, 20
degree of reaction, 48
electrochemical transfer coefficient, 72
expansion coefficient, $43, \mathbf{5 6}, 81,82$
fine-structure constant, 22, 95, 111, 144, 145
Madelung constant, 43
optical rotatory power, 37
plane angle, 13, 38, 89, 92, 136
polarizability, $17, \mathbf{2 4}, 41,95,134,135$, 140, 141
spin wavefunction, 19, 20, 29
transfer coefficient, 72
unit cell length, 42
α-particle, 8, 50, 115
phase, 55, 70, 71, 78
hyper-polarizability, 17, 24, 95
degeneracy, statistical weight, 26,45
plane angle, 13, 38, 89, 92, 136
pressure coefficient, 56
reciprocal energy parameter (to replace temperature), 46
resonance integral, 19
retarded van der Waals constant, 77
spin wavefunction, 19, 20, 29
unit cell length, 42
β-particle, 50, 115
phase, 55, 70, 71, 78
hyper-polarizability, 17, 24, 95
activity coefficient, 59, 62, 70, 75, 76
conductivity, 17, 73, 90, 132, 140, 147
cubic expansion coefficient, 43, 56, 81
Grüneisen parameter, 43
gyromagnetic ratio, 23, 27-29
mass concentration, 38, 48, 97
plane angle, 13, 38, 89, 92, 136
ratio of heat capacities, 57
shear strain, 15
surface tension, 14, 56, 77, 78, 81, 82, 90
transmission coefficient, 66
unit cell length, 42
proton gyromagnetic ratio, $\underline{112}$
gamma (unit of mass), 136
phase, 78
photon, 50, 67, 88, 115
integrated absorption coefficient, 37, 39, 40
Grüneisen parameter, 43
level width, linewidth, $24,66,67$
surface concentration, $48,63,77,78$
gamma function, 107
acoustic factor (dissipation), 15
centrifugal distortion constant, 25
chemical shift, 29
decay coefficient, 8,98
loss angle, 17
thickness, 13, 72, 77
Dirac delta function, Kronecker delta, 21, $23,42,106$
infinitesimal variation, 8
centrifugal distortion constant, 25
inertial defect, 25
mass excess, 22
change in extensive quantity, 60
finite change, $15,33,106$
symmetry label, 31
emissivity, emittance, 35
Fermi energy, 43
linear strain, 15
molar decadic absorption coefficient, 6, 36, 37
orbital energy, 20
permittivity, 16, 40, 41, 90
permittivity of vacuum, electric constant, 16, 17, 24, 35, 37, 39-41, 43, 70, 95,

111, 134, 143-146
$\boldsymbol{\lambda} \quad$ thermal conductivity tensor, 43
$\lambda \quad$ absolute activity, $46, \mathbf{5 7}, 58$
λ angular momentum quantum number (component), 30
decay constant, 24
mean free path, $44, \mathbf{6 5}, 80,81$
molar conductivity of an ion, 54, $\mathbf{7 3}$
thermal conductivity, 43, 44, 81, 90
van der Waals constant, 77
wavelength, $3,34-38,42-44,131$
lambda (unit of volume), 136
angular momentum quantum
number (component), 30-32
molar conductivity, 6, 54, 73, 90, 132
electric dipole moment, $17,23, \mathbf{2 6}, 35,39$, $41,95,141,146$
chemical potential, $5,6,8,43,44,46,57$, 58, 60-62
electric mobility, 73
electrochemical potential, 71
dynamic friction factor, 15
Joule-Thomson coefficient, 57
magnetic dipole moment, 17, 23, 95, 115, 121, 133, 142
mean, 151
mobility, 43
permeability, $5, \mathbf{1 7}, 81,90$
reduced mass, 14, 64-66, 95
Thomson coefficient, 43
viscosity, 15, 81
electrochemical potential, 71
permeability of vacuum, magnetic constant, $16, \mathbf{1 7}, 28,111,133,143,144,147$
Bohr magneton, 23, 27, 29, 95, 111, 112, 115, 133, 142
electron magnetic moment, 23, 111
nuclear magneton, 23, 29, 111, 115, 116, 121, 142
proton magnetic moment, $\underline{112}, 116$
micro (SI prefix), 91
micron (unit of length), 135
muon, $8,50, \underline{115}, 116$
stoichiometric number matrix, 53
charge number of cell reaction, 71
Debye frequency, 43
frequency, 13, 23, 25, 28, 29, 33-36, 41, $68,81,88,89,129$
kinematic viscosity, 15, 90, 138
stoichiometric number, 53,58, 61, 63, 71-74
Debye wavenumber, 43
wavenumber (in vacuum), $\mathbf{2 5}, 26,34-39$, 131
vibrational state symbol, 33
electron neutrino, 50, $\underline{115}$
Coriolis coupling constant, 26
extent of reaction, advancement, 48, 49, $\underline{53}, 58,60,63,67$
magnetizability, 23, 95, 142, 147
partition function (grand canonical ensemble), 46
standardized resonance frequency, 29
internal vibrational angular momentum, 30τ
surface pressure, 77
symmetry label, 32,33
ratio of circumference to diameter, 32 , $34-37,42,43,45,64,65,70,95,103$, 112, 134
pion, 115
osmotic pressure, 59
Peltier coefficient, 43
product sign, 105
symmetry label, 31-33
density matrix, 46
resistivity tensor, 43
acoustic factor (reflection), 15
charge density, 16, 18, 23, 43, 44, 140, 146-148
cylindrical coordinate, 13
density of states, $43,45,66,67$
density operator, 46
radiant energy density, 34, 90
mass density, mass concentration, 6,14 , $15,38,48,51,54,81,82,97$
reflectance, 36
surface density, 14
conductivity tensor, 43
shielding tensor, 29
absorption cross section, 37,38
area per molecule, 77
cross section, 24, 38, 64-66
conductivity, electrical conductivity, 17, $\quad \chi$
43, 44, 73, 140
density operator, 46
normal stress, 15
reflection symmetry operator, 31, 32
shielding constant, 29
order parameter, 42
spin quantum number (component), 30
standard deviation, 103, 151
spin quantum number (component), 30
Stefan-Boltzmann constant, 35, 112
surface charge density, $6,16,71$
surface tension, 14, 56, 77, 78, 81, 90
ψ
symmetry number, 46
variance, 151
Ψ wavenumber, 34
symmetry label, 32,33
spin quantum number (component), 30 , 32
film tension, 77
summation sign, 105
acoustic factor (transmission), 15
characteristic time interval,
relaxation time, 13, 43, 64
correlation time, 29
mean life, lifetime, 24, 43, 44, 64, 66, 115, 116
shear stress, 15, 81
thickness of layer, 77
Thomson coefficient, 43
transmittance, 36
fluidity, 15
plane angle, 13, 38, 89, 92, 136
volume fraction, 97,98
electric potential, 16, 75, 89, 140, 146, 147
fugacity coefficient, 58
inner electric potential, 70, 71
molecular orbital, 19-21
osmotic coefficient, 59
quantum yield, 66, 67
spherical polar coordinate, 13, 18, 21, 96
vibrational force constant, 27
volume fraction, 48, 97, 98
wavefunction, 18,46
work function, 80
heat flux, thermal power, 57, $8 \mathbf{1}$
magnetic flux, 17, 89, 142
potential energy, 14, 23
quantum yield, 66
radiant power, 34
work function, 43, 80
quadrupole interaction energy tensor, 24, 29
atomic orbital, 19, 21
electronegativity, 22
magnetic susceptibility, 17, 133, 142, 145, 147
surface electric potential, 70
electric susceptibility, 16, 145, 146
molar magnetic susceptibility, 17, 133, 142
outer electric potential, 70
wavefunction, 18, 20, 30, 43, 96
electric flux, 16
wavefunction, 18, 46
angular frequency, angular velocity, $8, \mathbf{1 3}$, 23, 34, 89, 98
$\omega_{\mathrm{D}} \quad$ Debye angular frequency, 43
$\omega \quad$ degeneracy, statistical weight, 26,45
$\omega \quad$ harmonic (vibrational) wavenumber, 25, 26
$\omega \quad$ solid angle, 13, 34, 36, 65, 89
$\Omega \quad$ angular momentum quantum number (component), 30, 32
Ω nutation angular frequency, 28
Ω partition function, 46 solid angle, 13, 34-36, 65, 89
$\Omega \quad$ volume in phase space, 45
$\Omega \quad$ ohm, 89, 140

Special symbols

$\% \quad$ percent, 97,98
\%o permille, 97,98

- degree (unit of arc), 38, 92, $\underline{136}$
${ }^{\ominus},{ }^{\circ} \quad$ standard (superscript), 60, 71
${ }^{\prime}$ minute (unit of arc), 92, 136
" second (unit of arc), 92, $\underline{136}$
* complex conjugate, 107
* excitation, 50
* pure substance (superscript), 60
$\ddagger, \neq \quad$ activated complex (superscript), transition state (superscript), 60
$\infty \quad$ infinite dilution (superscript), 60
e even parity symmetry label, 32
o odd parity symmetry label, 32
[B] amount concentration, concentration of B, 48, 54, 69
$\Delta_{\mathrm{r}} \quad$ derivative with respect to extent of reaction, 58, 60, 74
$\operatorname{dim}(Q) \quad$ dimension of quantity $Q, 4$
$\nabla \quad$ nabla, 16-18, 20, 43, 81, 96, 107, 146, 147
$[\alpha]_{\lambda}{ }^{\theta} \quad$ specific optical rotatory power, 37, 38
$[Q] \quad$ unit of quantity $Q, 4$

13 SUBJECT INDEX

When more than one page reference is given, bold print is used to indicate the general (defining) reference. Underlining is used to indicate a numerical entry of the corresponding physical quantity. Greek letters are ordered according to their spelling and accents are ignored in alphabetical ordering. Plural form is listed as singular form, where applicable.
ab initio, 20
abbreviations, 157-164
abcoulomb, 139
absolute activity, 46, 57
absolute electrode potential, 71
absorbance, 36, 37, 39, 40
decadic, 5, 36, 37
napierian, 36, 37
absorbed dose (of radiation), 89, 139
absorbed dose rate, 90
absorbing path length, 37
absorptance, 36, 37
internal, 36
absorption, 33, 35, 37, 38, 41
net, 38
rate of photon, 67
spectral, 38
absorption band, 37, 41
absorption band intensity
net integrated, 39
absorption coefficient, 6, 35-37, 40, 41
decadic, 36
integrated, 37, 39-41
linear decadic, 36
linear napierian, 36
molar, 6
molar decadic, 36, 37
molar napierian, 36
napierian, 36, 38
net, 37
absorption cross section integrated, 38
integrated net, 37 net, 37
absorption factor, 36
absorption factor (acoustic), 15
absorption factor (radiation), 15
absorption index, 37
absorption intensity, 38-40
conventions for, 40
spectroscopic, 40
absorption line, 37 lorentzian, 67
absorption of species, 77
absorption spectrum, 36
abundance isotopic, 121
acceleration, 13, 90, 137
acceleration of free fall, $13, \mathbf{7 8}, 81$ standard, 112, 137
accepted non-SI unit, 92
acceptor, 44
acceptor ionization energy, 43
acid dissociation
equilibrium constant for an, 59
acoustic factor, 15
acoustics, 14, 15, 98, 99
acre, $\underline{136}$
acronyms, 157-164
action, 14, 95, 138
au of, 138
activated complex (superscript), 60
activation
standard enthalpy of, 65
standard entropy of, 65
standard internal energy of, 65
volume of, 65
activation energy, 64
Arrhenius, 64
activity, 57, 58, 70, 72
absolute, 46, 57
catalytic, 89
mean ionic, 70
radioactive, 24, 89, 139
relative, 57, 71
unit, 74
activity coefficient, 58, 59, 61, 70, 75
mean ionic, 70
activity coefficient (concentration basis), 59
activity coefficient (Henry's law), 59
activity coefficient (molality basis), 59
activity coefficient (mole fraction basis), 59
activity coefficient (Raoult's law), 59
activity of an electrolyte, 70
activity of hydrogen ions, 75
addition in quadrature, 153
adjoint, see hermitian conjugate
admittance (complex), 17
adsorbed amount, 77
adsorbed molecules
number of, 78
adsorbed species, 54
adsorbed substance
amount of, 78
adsorption, 78
reduced, 78
relative, 78
adsorption (subscript), 59
advancement, 48
affinity, 58
electron, 22
affinity of reaction, 58, 61
Alfvén number, 82
α-particle, $8,50, \underline{115}$
amagat, 139
reciprocal, 139
American system of names, 98
amorphous solid, 54, 55
amount, 4, 47, 53, 54, 59, 89
chemical, 4, 45, 47, 53
excess, 77
Gibbs surface, 78
surface, 77
surface excess, $\mathbf{7 7}, 78$
amount concentration, $4,37,38,48,54,62,63,81$, 90
amount density, 139
amount fraction, 48, 49, 97
amount of adsorbed substance, 78
amount of substance, $4,45,47,48,51,53,56,63,71$, $85,86,88,89$
amount of substance of photons, 68
amount-of-substance concentration, $4,6,37,38,48$, 90
amount-of-substance fraction, 48, 97, 121, 133
Ampère law, 147
ampere, $4,85,86,87,139,143$
amplitude, 8,98
scattering, 42
amplitude function, 18
amplitude level
signal, 98
analysis of variance, 152
angle, 35
Bragg, 42
contact, 77
loss, 17
plane, 13, 38, 89
plane (degree), 92
plane (minute), 92
plane (second), 92
reciprocal unit cell, 42
rotation, 79
scattering, 65
solid, 13, 34, 36, 65, 89
unit cell, 42
weak mixing, 24, 111
angle of optical rotation, 37, 38
ångström, 131, 135
angular frequency, 8, 13, 34, 89, 98
Debye, 43
Larmor, 23
nutation, 28
angular frequency unit, 28
angular fundamental translation vector, 42
angular momentum, 14, 18, 20, 23, 28, 30, 67, 95,

121, 138
electron orbital, 30
electron orbital plus spin, 30
electron spin, 30
internal vibrational, 30
nuclear orbital, 30
nuclear spin, 30
orbital, 32
reduced, 95
spin, 19, 28, 116
total, 32
angular momentum component, 30
angular momentum eigenvalue equation, 30
angular momentum operator, 19, 28, 30
symbol of, 30
angular momentum quantum number, 23, 26, 30, 67
angular reciprocal lattice vector, 42
angular velocity, 13, 89, 90
angular wave vector, 43
anharmonicity constant
vibrational, 25
anode, 75
anodic partial current, 72
anodic transfer coefficient, 72
ANOVA, 152
anti-bonding interaction, 19
anti-symmetrized product, 20
anticommutator, 19
antineutrino, 115
antineutron, 50
antiparticle, 115
antiproton, 50
apparent (superscript), 60
aqueous-organic solvent mixture, 76
aqueous solution, 54, 55, 57, 74, 97
aqueous solution at infinite dilution, 54, 55
aqueous system, 74
arc
length of, 13
arc function, 106
are, 136
area, $6,13,24,34,36,78,81,90,136$
electric quadrupole moment, 121
infinitesimal, 13
nuclear quadrupole, 26
quadrupole, $\underline{141}$
specific surface, 77
surface, $49,71,77,78$
vector element of, 16
area element, 35
area hyperbolic function, 106
area per molecule, 77
areic, 6
areic charge, 6
Arrhenius activation energy, 64
assembly, 45
astronomical day, 137
astronomical unit, 9, 92, 94, 136
astronomy, 94
asymmetric reduction, 25
asymmetric top, 30, 31, 33
asymmetry parameter, 25
Wang, 25
asymmetry-doubling, 31
atmosphere, 131
litre, 137
standard, 62, 111, 138
atmospheric pressure, 58
atomic absorption spectroscopy, 97
atomic mass, 22, 47, 121
average relative, 120
relative, 47, 117-120
atomic mass constant, 22, 47, 111, 117
atomic mass evaluation, 121
atomic mass unit
unified, $9,22,47, \mathbf{9 2}, 94, \underline{111}, 116,117,121,136$
atomic number, 22, 23, 49, 50, 117, 121
atomic orbital, 19
atomic-orbital basis function, 19, 21
atomic physics, 22
atomic scattering factor, 42
atomic spectroscopy, 14
atomic standard, 137
atomic state, 32
atomic unit, $4,18,20,22,24,26, \mathbf{9 4}, \underline{95}, 96,129$, $132,135,143-145$
symbol for, 94-96
atomic unit of magnetic dipole moment, 95
atomic units
system of, 145
atomic weight, 47, 117-120
atomization, 61 energy of, 61
atomization (subscript), 59
atto, 91
au, 139
au of action, $\underline{138}$
au of force, 137
au of time, 137
average, 41, 49
average collision cross section, 64
average distance
zero-point, 27
average lifetime, 64
average mass, 117
average molar mass, 77
average molar mass (z-average), 77
average molar mass (mass-average), 77
average molar mass (number-average), 77
average population, 46
average probability, 46
average relative atomic mass, 120
average speed, 45, 81
averaged collision cross section, 64,65
Avogadro constant, 4, 9, 45, 47, 53, 111, 112
avoirdupois, 136
axis of quantization, 30
azimuthal quantum number, 30
band gap energy, 43
band intensity, 26, 38-40
bar, 48, 131, 138, 233
barn, 121, 136
barrel (US), 136
base hydrolysis, 59
base of natural logarithm, 8
base quantity, $4,16,85,86$
symbol of, 4
base unit, $34,85-89,93,135,143,144$
SI, 4, 85-88, 90, 91
base-centred lattice, 44
basis function atomic-orbital, 19, 21
Bates-Guggenheim convention, 75
becquerel, $\mathbf{8 9}, 139$
Beer-Lambert law, 35, 36
bel, 92, 98, 99
bending coordinate, 27
best estimate, 149
β-particle, 50, 115
billion, 98
bimolecular reaction, 68, 69
binary multiple, 91
binominal coefficient, 105
biochemical standard state, 62
biot, 135, 139, 144
Biot-Savart law, 146
BIPM, 5, 9
black body, 35
black-body radiation, 87
Bloch function, 43
body-centred lattice, 44
bohr, 135, 145
Bohr magneton, 23, 29, 95, 111, 115, 133, 142
Bohr radius, 9, 22, 95, 111
Boltzmann constant, 36, 45, 46, 64, 81, 111
bond dissociation energy, 22
bond length
equilibrium, 96
bond order, 19, 21
bonding interaction, 19
boson
W-, 111, 115
Z-, 111, 115
Bragg angle, 42
Bragg reflection, 44
branches (rotational band), 33
Bravais lattice vector, 42
breadth, 13

British thermal unit, $\underline{137}$
bulk lattice, 79
bulk modulus, 15
bulk phase, 40, 71, 77
bulk plane, 79
bulk strain, 15
bulk viscosity, 81
Burgers vector, 42
calorie
$15^{\circ} \mathrm{C}, 137$
international, 137
thermochemical, 58, 137
candela, $34,85,86,88$
canonical ensemble, $\mathbf{4 5}, 46$
capacitance, 16, 140, 146
electric, 89
cartesian axis
space-fixed, 35, 39
cartesian component, 107
cartesian coordinate system, 107
cartesian (space) coordinate, 13, 21
catalytic activity, 89
catalytic reaction mechanism, 68
cathode, 75
cathodic current, 70
cathodic partial current, 72
cathodic transfer coefficient, 72
cavity, 36
Fabry-Perot, 36
laser, 36
CAWIA, 117, 121
cell
electrochemical, 52, 71, 73-75
electrolytic, 73, 75
cell diagram, 71, 72, 73, 74
cell potential, 16, 71, 89
cell reaction
electrochemical, 52, $\mathbf{7 4}$
cell without transference, 75
Celsius scale
zero of, $\underline{111}$
Celsius temperature, $38,46,56,89,111,138$
centi, 91
centigrade temperature, 56
centimetre, 134, 135, 144
centipoise, 138
central coulomb field, 23
centre of mass, 31
centrifugal distortion constant, 25
centrifugation, 78
CGPM, xi, 85, 87, 88, 92
CGS unit, 96, 135-138
chain-reaction mechanism, 68
characteristic Debye length, 78
characteristic impedance, 111
characteristic number, 5
transport, 82
characteristic temperature, 46
characteristic terrestrial isotopic composition, 117, 120
characteristic time interval, 13
characteristic (Weiss) temperature, 43
charge, 16, 18, 20, 43, 71, 72, 95, 115, 116
areic, 6
effective, 21
electric, 4, 16, 50, 70, 89, 134, 135, 139, 144
electron, 18
electronic, 19
electrostatic unit of, 135
electroweak, 24
elementary, $8,9, \mathbf{2 2}, 24,26,70,94-96, \underline{111}, 145$
ion, 73
point of zero, 78
proton, 22, 70
reduced, 95
charge (au)
proton, 139
charge density, 16, 18, 23, 43, 44, 140
electric, 90
surface, 6, 71
charge number, 20, 49-51, 70, 71, 73
ionic, 49
charge number of cell reaction, 71
charge order, 19
charge partition, 74
charge transfer, 71, 72, 74
chemical amount, 4, 45, 47
chemical composition, 47, 51, 71
chemical-compound name, 8
chemical element, 49
symbol for, $8,9,49,50,113,117-120$
chemical energy, 73
chemical equation, 49, 53
bimolecular elementary reaction, 68
elementary reaction, 68, 69
general, 53
stoichiometric, 52, 60, 63, 68, 69
unimolecular elementary reaction, 68
chemical equilibrium, 71, 74
local, 72
chemical formula, 49-51
chemical kinetics, 63, 68
chemical potential, $5,6,8,44,46,57,62$ standard, 57, 61, 62
chemical reaction, 53, 60, 63, 73 equation for, 52
transition state theory, 65
chemical shift, 29
chemical substance, 51
chemical symbol for element, 50
chemical thermodynamics, 56-62
chemically modified electrode, 70
chemistry quantum, 18-21
chemistry (quantum), 94
choice of standard state, 58
choice of unit, 3
CIAAW, 117
CIPM, 9, 56, 94
circular cross-section, 87
circular frequency, 44
Larmor, 23
circumference, 112
classical electrostatics, 70
classical mechanics, 14-15
clausius, 138
Clausius-Mossotti formula, 40
closed-shell species, 21
closed-shell system, 20
CME, 70
CODATA, 95, 111, 115
coefficient
absorption, 6, 35-37, 40, 41
activity, 58, 59, 61, 70, 75
decay, $8, \mathbf{9 8}$
diffusion, 43
Einstein, 35, 37, 39
expansivity, 57
extinction, 37
fugacity, 58
Hall, 43
Joule-Thomson, 57
Lorenz, 43
mass transfer, 72
molar absorption, 6
osmotic, 59
Peltier, 43
pressure, 56
pressure virial, 57
sedimentation, 77, 78
Thomson, 43
transmission, 66
van der Waals, 57
virial, 57
coefficient of heat transfer, 81
coefficient of thermal expansion, 57
coherent derived units, 85
coherent SI units, 85
coherent system, 93
coherent system of units, 85, 93
coherent unit, 93
collision, 65
individual, 65
collision cross section, 64
averaged, 64,65
collision density, 65
collision diameter, 64
collision energy, 66
translational, 65
collision frequency, 64, 65
collision frequency factor, 65
collision model
hard sphere, 64
collision number, 65
collision partner, 64
collision theory, 65
collisions
total number of, 65
colloid chemistry, 77, 78
combined standard uncertainty, 152
combustion, 61
standard enthalpy of, 61
combustion reaction (subscript), 59
commutator, 19
complete set of SI units, 85
complex admittance, 17
complex coefficient, 46
complex conjugate, 18,107
complex conjugate matrix, 107
complex impedance, 17
complex ion, 51
complex mechanism, 68
complex molar polarizability, 41
complex number, 107
complex refractive index, 37, 40
complex relative permittivity, 40
component quantum number, 30
composite mechanism, 68
compressibility
isentropic, 56
isothermal, 43, 56
compressibility factor, 57
compression factor, 57
compression modulus, 15
concentration, 38, 48, 59, 62, 64, 67, 70, 72, 90, 132
amount, 4, 37, 38, 48, 54, 62, 63, 81, 90
amount-of-substance, $4,6,37,38,48,90$
critical coagulation, 78
critical micellisation, 78
excited state, 67
mass, $38,48,97$
mean ionic, 70
number, 43, 45, 48, 63, 64
reduced surface excess, 78
relative surface excess, 78
standard, 62, 72
substance, 4,48
surface, $48,63,77$
surface excess, 77
total surface excess, 77
concentration at the interface, 72
concentration change
rate of, 63
concentration perturbation, 64
concentration vector, 67
condensed phase, 40, 41, 48, 54, 58
conductance, 17
electric, 89
specific, 73
thermal, 81
conductivity, $6, \mathbf{1 7}, 73,90,132,140,147$
electric, 81
electrical, 44
equivalent, 73
ionic, 54, 73
molar, 6, 54, 73, 90, 132
molecular, 73
thermal, 81, 90
conductivity of an ion
molar, 73
conductivity tensor, 43
thermal, 43
conductor, 87
electron, 73
ionic, 73
metallic, 74
conductor element, 143
confidence
level of, $\mathbf{1 5 4}$
confidence interval, 154
conjugate transpose, 107
connectivity formula, 51, 52
conservation matrix, 53
constant
atomic mass, 22, 47, 111, 117
Avogadro, 4, 9, 45, 47, 53, 111, 112
Boltzmann, 36, 45, 46, 64, 81, 111
Coriolis coupling, 26
Coriolis $\zeta_{-, ~ 26, ~}^{20}$
dielectric, 16
effective hamiltonian, 26
electric, 16, 111, 143
Faraday, 70, 111
fine-structure, 22, 95, 111, 144, 145
force, 27
fundamental physical, 9, 95, 96, 111-112, 133
gravitational, 14
heliocentric gravitational, 94
Henry's law, 58, 59
hyperfine coupling, 27
Madelung, 43
magnetic, 17, 111, 143
mathematical, 7, 103, 112
Michaelis, 66, 67
microscopic, 87
molar mass, 47
Planck, 7, 9, 22, 34, 95, 111
radiation, 36, 112
rate, 63-65, 67-69
rotational, 25-27

Rydberg, 22, 111
shielding, 29
Stefan-Boltzmann, 35, 112
time, 13
van der Waals, 77
van der Waals-Hamaker, 77
constant of motion, 67
contact angle, 77
contact potential difference, 74
conventions in chemical thermodynamics, 59
conventions in electrochemistry, 73
conversion
rate of, 63, 67, 89
conversion factors, $129,134, \mathbf{1 3 5}, 145$
energy, 234
pressure, 233
conversion of units, 129
conversion tables for units, 135-142
convolution of function, 107
coordinate, 42
bending, 27
cartesian (space), 13, 21
cylindrical, 13
dimensionless normal, 27
dimensionless vibrational, 27
electron, 20, 96
fractional, 42
generalized, 13, 14, 45
internal, 27
internal vibrational, 27
mass adjusted vibrational, 27
molecule-fixed, 31
normal, 27
space-fixed, 31
spherical polar, 13, 21
stretching, 27
symmetry, 27
symmetry vibrational, 27
vibrational normal, 27
coordinate perpendicular to surface, 80
coordinate representation, 18
core hamiltonian, 20
Coriolis coupling constant, 26
Coriolis ζ-constant, 26, 30
correlation time, 29
corrosion nomenclature, 70
coulomb, 89, 134, 139
coulomb field
central, 23
coulomb integral, 19, 20
Coulomb law, 146
coulomb operator, 20, 21
Coulomb's modulus, 15
coupling constant
Coriolis, 26
dipolar, 28

Fermi, 111
hyperfine, 27
nuclear quadrupole, 29
nuclear spin-spin, 28
quadrupole, 29
reduced, 28
reduced nuclear spin-spin, 28
spin-orbit, 25
spin-rotation, 28
coupling path, 28
covariance, 152
coverage factor, 152, 153
Cowling number, 82
critical coagulation concentration, 78
critical micellisation concentration, 78
cross product, 107
cross section, 24, 38
averaged collision, 64, 65
collision, 64
differential, 65
integrated, 39
integrated absorption, 38
integrated net absorption, 37
net absorption, 37
reaction, 65
total, 65
cross-section
circular, 87
crystal
liquid, 54, 55
crystal axis, 40
crystal face, 44
crystal lattice, 42
crystal lattice symbol, 44
crystalline, 54, 61
crystalline solid, 55
cubic expansion coefficient, $43,56,81$
cubic metre, 136
cumulative number of states, 45
curie, 139
Curie relation, 133
Curie temperature, 43
curl of a vector field, 107
current, 87, 145
anodic partial, 72
cathodic, 70
cathodic partial, 72
electric, $4, \mathbf{1 6}, 72,85,86,95,139,143,144$
electromagnetic unit of, 135
exchange, 72
faradaic, 72
particle, 65
zero, 71
current density, 72, 147
electric, 16, 18, 72, 90
exchange, 72
probability, 18
thermal, 44
cycles per second, 89
cylindrical coordinate, 13
dalton, $9,22,47, \mathbf{9 2}, 94, \underline{136}$
damped linear oscillator, 8
day, 92, 137
astronomical, 137
debye, 26, 39, 141
Debye angular frequency, 43
Debye angular wavenumber, 43
Debye cut-off wavelength, 43
Debye frequency, 43
Debye length, 77
characteristic, 78
Debye screening length, 78
Debye temperature, 43, 46, 80
Debye wavenumber, 43
Debye-Hückel theory, 75
Debye-Waller factor, 42
deca, 91
decadic absorbance, 5, 36, 37
decadic absorption coefficient, 36
decadic logarithm, 63, 98, 99
decay
exponential, 67
radioactive, 64
rate of, 36
decay coefficient, 8,98
decay constant, 24
decay rate constant, 24
decay time, 64
deci, 91
decibel, 98, 99
decimal marker, 103
decimal multiple of units, $6,85,91$
decimal prefixes, 85
decimal sign, 103
decimal submultiple of units, $6,85,91$
degeneracy, 26, 39, 45
nuclear spin, 26
vibrational, 26
degenerate electronic state, 31
degenerate modes, 26
degenerate species, 31
degenerate vibrational state, 31
degree, 92, 136
degree Celsius, 89, 138
degree of certainty, 103
degree of dissociation, 49, 98
degree of freedom, 151, 152
degree of ionization, 49
degree of plane angle, 38
degree of reaction, 48
degree Rankine, 138
del operator, 107
density, 14, 81, 90
amount, 139
charge, 16, 18, 23, 43, 44, 140
collision, 65
current, 72, 147
electric current, 16, 18, 72, 90
energy, 35, 90
flux, 81
ion, 43
mass, $6, \mathbf{1 4}, 38,48,51,54,90,97$
number, 43-45, 48, 81
probability, 18, 151
probability current, 18
relative, 14
surface, 14
density matrix, 46
density matrix element, 21, 46
density of radiation
energy, 148
density of states, $43, \mathbf{4 5}, 66,67$
density of states of transition state, 66
density operator, 46
deposition of species, 77
derived quantity, 4
determinant of a square matrix, 107
deuteron, 50, 115
diameter, 13, 112
collision, 64
dielectric constant, 16
dielectric effects, 40, 41
dielectric medium, 17
dielectric polarization, 16, 40, 146
differential cross section, 65
diffusion rate of, 74
diffusion coefficient, 43, 44, 72, 81, 90 thermal, 81
diffusion layer thickness, 72
diffusion length, 43
diffusivity thermal, 81
dilute solution, 58, 97
dilution
infinite, 54, 55, 61
dilution (subscript), 59
dimension, 4
symbol of, 4
dimension one, 36, 82, 97-99
dimensionless, 13
dimensionless normal coordinate, 27
dimensionless quantity, $5,11,18,97-99$
dimensionless vibrational coordinate, 27
dipolar coupling constant, 28
dipolar interaction tensor, 28
dipole, 17, 26, 146
magnetic, 147
dipole layer, 70
dipole length, 26, 141
electric, 26
dipole moment, 17, 24, 26, 28, 134
electric, 17, 23, 26, 39, 41, 95, 141, 146
magnetic, $17, \mathbf{2 3}, 95,121,133,142$
molecular, 26
molecular magnetic, 133
dipole moment (molecule)
electric, 26
transition, 26
dipole moment operator, 35
dipole moment per volume
electric, 16
magnetic, 17
dipole moment vector, 16
dipole transition
electric, 35, 39
dipole vector, 17
Dirac delta distribution, 106
Dirac delta function, 106
disintegration (rate) constant, 24
disintegration energy, 24
dispersion
expected, 149
displacement
electric, 16, 141, 146
non-rationalized, 141
vibrational, 27
displacement (subscript), 59
displacement vector, 42
dissipation factor (acoustic), 15
dissociation
degree of, 49, 98
dissociation energy, 22, 96
bond, 22
dissociation energy (ground state), 22
dissociation energy (potential minimum), 22
dissolution, 59
distance, 13, 15, 17, 18, 20, 26, 44, 65
equilibrium, 27
ground-state, 27
interatomic, 27
interatomic equilibrium, 27
interatomic (internuclear), 27
mean Earth-Sun, 92
reduced, 95
substitution structure, 27
zero-point average, 27
distance parameter
effective, 27
distribution function
speed, 45
divergence of a vector field, 107
donor, 44
donor ionization energy, 43
dose equivalent, 89, 139
dose equivalent index, 89
dose of radiation
absorbed, 89, 139
dose rate
absorbed, 90
double harmonic approximation, 41
duration, 13
dyn, 134
dynamic friction factor, 15
dynamic viscosity, 15, 90,138
dyne, 137
effective charge, 21
effective distance parameter, 27
effective hamiltonian, 19
effective hamiltonian constant, 26
effective magnetic flux density, 29
effective mass, 43
effective parameter, 112
effective vibrational hamiltonian, 26
efficiency, 90, 97
effusion
rate of, 81
eigenfunction, 21
eigenvalue equation
angular momentum, 30
einstein, 68
Einstein coefficient, 35, 37, 39
Einstein temperature, 46
Einstein transition probability, 37, 39
elastic scattering, 65
elasticity
modulus of, 15
electric capacitance, 89
electric charge, $4, \mathbf{1 6}, 50,70,89,134,135,139,144$
electric charge density, 90
electric conductance, 89
electric conductivity, 81
electric constant, 16, 111, 143
electric current, $4, \mathbf{1 6}, 72,85,86,95,139,143,144$
electric current density, 16, 18, 72,90
electric dipole length, 26
electric dipole moment, $17,23, \mathbf{2 6}, 39,41,95,141$, 146
electric dipole moment (molecule), 26
electric dipole moment per volume, 16
electric dipole transition, 35, 39
electric displacement, 16, 141, 146
electric field, 24, 95, 104, 146
electric field gradient, 29, 141
electric field gradient tensor, 24
electric field strength, $7, \mathbf{1 6}, 24,26,73,90,134,140$, 145-147
electric flux, 16
electric mobility, 73
electric permittivity, 145
electric polarizability, 95
electric polarizability of a molecule, 24
electric polarization, 16
electric potential, 16, 70, 75, 89, 140
inner, 70
outer, 70
surface, 70
electric potential difference, 16, 44, 74
electric quadrupole moment, 95, 141
electric quadrupole moment area, 121
electric resistance, 17, 89, 140
electric susceptibility, 16, 145, 146
electric tension, 16, 89, 140
electrical conductivity, 44
electrical energy, 73
electricity, 16-17
quantity of, 16
electrochemical biosensor, 70
electrochemical cell, 52, 71, 73-75
electrochemical cell reaction, $52, \mathbf{7 4}$
electrochemical engineering, 70
electrochemical potential, 71
electrochemical reaction, $71,72, \mathbf{7 4}, 75$
electrochemical transfer coefficient, 72
electrochemistry, 70-73
conventions in, 73
electrode, 73
negative, 75
positive, 75
electrode potential, 71, 74, 75
absolute, 71
equilibrium, 71, 72
standard, 71, 74
electrode reaction, 71, 72, $\mathbf{7 4}$
electrokinetic phenomena, 70
electrokinetic potential, 73
electrolytic cell, 73, 75
electromagnetic force, $\mathbf{1 4 3}, 144$
electromagnetic potential, 147, 148
electromagnetic quantity, 144
electromagnetic radiation, 34-41 intensity of, 35
electromagnetic theory, $\mathbf{1 4 3}, 146$
electromagnetic unit, 129, 144
electromagnetic unit of current, 135
electromagnetic unit system, 143
electromotive force, see cell potential
electron, $8, \mathbf{5 0}, \underline{115}$
electron affinity, 22
electron antineutrino, 50
electron charge, 18
electron conductor, 73
electron configuration, 8, $\mathbf{3 2}$
electron coordinate, 20, 96
electron energy, 44
electron magnetic moment, 23, 111
electron mass, $9,22,29,94, \mathbf{9 5}, \underline{111}, 136$
electron mean free path, 80
electron neutrino, 50, 115
electron number, 52, 71
electron number (of an electrochemical reaction), 71
electron orbital, 28
electron orbital angular momentum, 30
electron orbital operator, 25
electron orbital plus spin angular momentum, 30
electron paramagnetic resonance, 27
electron spin angular momentum, 30
electron spin multiplicity, 32
electron spin operator, 25,27
electron spin resonance, 27
electron spin wavefunction, 19
electron velocity, 44
electron wavefunction, 18
electron work function, 43
electronegativity, 22
electronic arrangement, 51
electronic charge, 19
electronic energy, 44 total, 20, 21
electronic energy barrier, 64
electronic potential, 23, 64
electronic term, 25
electronic term symbol, 51
electronic transition, 37
electronvolt, $9,92, \mathbf{9 4}, 132,137$
electrostatic force, 143, 144
electrostatic interaction energy, 43
electrostatic potential, 70, 146
electrostatic potential (of a phase), 70
electrostatic unit, 144
electrostatic unit of charge, 135
electrostatic unit system, 143
electroweak charge, 24
element
standard atomic weight, 117-120
symbol for chemical, 49, 50, 113, 117-120
elementary charge, $8,9, \mathbf{2 2}, 24,26,70,94-96,111$, 145
elementary entity, $4, \mathbf{5 3}, 88,89$
elementary particles
symbols for, $8,22, \mathbf{5 0}, 113, \underline{115}$
elementary reaction, $52,65, \mathbf{6 8}, 69$
elementary step, 52
elements
isotopic composition, 117, 122-128
relative atomic mass, 117-120
elongation
relative, 15
emf, see electromotive force
emission, 33, 38
induced, 35, 37-39
spontaneous, 35, 67
stimulated, 35
emissivity, 35
emittance, 35
empirical formula, 51
emu, 135, 139, 141-145
non-rationalized, 133
emu system, 144
emu unit system, 143
energy, 14, 19, 20, 22, 32, 33, 36, 45, 56, 67, 88, 89, $92,94,95,132,137,146,147,234$
acceptor ionization, 43
activation, 64
Arrhenius activation, 64
band gap, 43
bond dissociation, 22
chemical, 73
collision, 66
disintegration, 24
dissociation, 22, 96
donor ionization, 43
electrical, 73
electron, 44
electronic, 44
electrostatic interaction, 43
excitation, 131, 132
Fermi, 43
Gibbs, 6, 56, 74
Hartree, 22, 95, 111
Helmholtz, 56, 78
internal, 55, 56
ionization, 22
kinetic, 5, 14, 93, 94
molar, 90, 129, 234
one-electron orbital, 20
partial molar Gibbs, 6, 57, 71
potential, 14, 23
radiant, 34
reduced, 95
specific, 90
standard Gibbs, 71
standard reaction Gibbs, 58
threshold, 64, 67
total, 65
total electronic, 20, 21
translational collision, 65
energy (dipole)
potential, 26
energy barrier
electronic, 64
energy conversion factors, 234
energy density, 35, 90
radiant, 34
spectral radiant, 34, 35
energy density of radiation, 148
energy eigenfunction, 45
energy flow
rate of radiation, 148
energy level, 38, 39
energy of activation
standard Gibbs, 66
standard internal, 65
energy of atomization, 61
energy parameter, 19
reciprocal, 46
energy per area, 35
energy per time
radiant, 34
energy tensor
nuclear quadrupole interaction, 24
energy unit, 129
energy-related unit, 129
enplethic, 6
enplethic volume, 6
enplethy, 4, 6, 45
ensemble, 46, 67
canonical, 45, 46
grand canonical, 46
microcanonical, 46
enthalpy, $4,6,8,56$
molar, 6, 8
standard partial molar, 57
standard reaction, 5, 58
enthalpy of activation standard, 65
enthalpy of combustion standard, 61
enthalpy of formation
standard, 55
standard molar, 58
enthalpy of reaction molar, 60
enthalpy of vaporization molar, 60
entitic, 6
entity, 44, 47, 50, 51, 53, 54, 72, 73, 88
elementary, $4, \mathbf{5 3}, 88,89$
formula, 54
mass of, 47
product, 53
reactant, 53
entropy, 4, 56, 90, 138
equilibrium (maximum), 46
molar, 55, 90, 139
specific, 90
standard partial molar, 57
standard reaction, 58
statistical, 46
entropy change
rate of, 63
entropy of activation
standard, 65
entropy of formation
standard, 61
entropy of reaction molar, 60
entropy per area
interfacial, 78
entropy unit, 139
enzyme, 67
enzyme catalysis, 67
enzyme unit, 89
enzyme-substrate complex, 67
EPR, 27
equation
stoichiometric, 49, 52, 60, 63, 68, 69
equation of state van der Waals, 57
equations of electromagnetic theory, 143, 146
equilibrium, $52,58,71,74,75$
thermal, 39
equilibrium (maximum) entropy, 46
equilibrium bond length, 96
equilibrium charge partition, 74
equilibrium constant, 58
standard, 58, 61
thermodynamic, 58
equilibrium constant (acid dissociation), 59
equilibrium constant (base hydrolysis), 59
equilibrium constant (concentration basis), 58
equilibrium constant (dissolution), 59
equilibrium constant (fugacity basis), 58
equilibrium constant (molality basis), 58
equilibrium constant (pressure basis), 58
equilibrium constant (water dissociation), 59
equilibrium distance, 27
interatomic, 27
equilibrium electrode potential, 71, 72
equilibrium macroscopic magnetization, 28
equilibrium position vector, 42
equilibrium potential, 71, 72, 74
equilibrium signal intensity, 29
equivalent conductivity, 73
erg, $134,135,137,138,142,144$
ESR, 27
estimated probability, 154
estimated standard deviation, 152
estimated variance, 152
esu, 134, 135, 139-141, 144, 145
non-rationalized, 133
esu system, 143, 144
esu unit system, 143
étendue, 35, 36
Euler number, 82
evaporation (subscript), 60
exa, 91
exabinary, 91
exbi, 91
excess amount, 77
excess quantity (superscript), 60
exchange current, 72
exchange current density, 72
exchange integral, 20
exchange operator, 20, 21
excitation, 50
excitation energy, 131, 132
molar, 132
excitation symbol, 50
excited electronic state, 8,50
excited state, 32
excited state concentration, 67
excited-state label, 33
expanded uncertainty, 151-153
expansion coefficient
cubic, $43, \mathbf{5 6}, 81$
linear, 56
expansivity coefficient, 57
expectation value, $\mathbf{2 3}, 24$
expectation value (core hamiltonian), 20
expectation value (operator), 18
expected best estimate, 149
expected dispersion, 149
expected value, 151
exponential decay, 67
exponential function, 106
exposure, 90
extensive, 6
extensive quantity, 6, 57, 81
extensive quantity (divided by area), 81
extensive quantity (divided by volume), 81
extensive thermodynamic quantity, 60
extent of reaction, 48, 53, 60
extinction, 37
extinction coefficient, 37

f-value, 37

Fabry-Perot cavity, 36
face-centred lattice, 44
factor
absorption, 36
acoustic, 15
(acoustic) absorption, 15
(acoustic) dissipation, 15
(acoustic) reflection, 15
(acoustic) transmission, 15
atomic scattering, 42
collision frequency, 65
compressibility, 57
compression, 57
Debye-Waller, 42
dynamic friction, 15
frequency, 64
normalization, 18, 20, 21
pre-exponential, 63, 64
quality, 36
(radiation) absorption, 15
reflection, 36
structure, 42
symmetry, 72
transmission, 36
factorial, 105
Fahrenheit temperature, 138
farad, 89
faradaic current, 72
Faraday constant, 70, 111
Faraday induction law, 147
femto, 91
femtometre, 121
fermi, 135
Fermi coupling constant, 111
Fermi energy, 43
Fermi sphere, 44
field, 98
electric, 24, 95, 104, 146
magnetic, 17, 29, 141
field gradient
electric, 29, 141
field gradient tensor, 29
field level, 98, 99
field strength
electric, $7,16,24,26,73,90,134,140,145-147$
magnetic, 17, 90, 142, 147
film, 78
film tension, 77
film thickness, 77
fine-structure constant, 22, 95, 111, 144, 145
finesse, 36
first-order kinetics
generalized, 67
first-order rate constant, $\mathbf{6 6}, 67$
first-order reaction, 72
Fischer projection, 51, 52
flow, 81
flow rate, 81
fluence, 35
fluence rate, 35
fluid phase, 54
fluidity, 15
fluorescence, 67
fluorescence rate constant, 66
flux, 72,81
electric, 16
heat, 81
luminous, 89
magnetic, 17, 89, 142
probability, 18
radiant, 89
reflected, 15
sound energy, 15
transmitted, 15
flux density, 81
effective magnetic, 29
heat, 81, 90
magnetic, 17, 28, 81, 89, 95, 141, 145-147
number, 81
particle, 44
radiofrequency (magnetic), 28
static magnetic, 28
flux density of mass, 81
flux of mass, 81
Fock operator, 20, 21
matrix element of, 21
fonts for symbol, 7
foot, 135
force, $\mathbf{1 4}, 87,89,95,104,134,137,138,144,146-148$
au of, 137
electromagnetic, 143, 144
electromotive, see cell potential
electrostatic, 143, 144
infinitesimal electromagnetic, 143
lineic, 144
Lorentz, 148
moment of, 14, 90
thermoelectric, 43, 44
force constant, 27
vibrational, 27
formal potential, 72
formation, $52,55,58, \mathbf{6 1}$
formation reaction (subscript), 60
formula, 50, 51
chemical, 49-51
connectivity, 51, 52
empirical, 51
molecular, 51
resonance structure, 51, 52
stereochemical, 51, 52
structural, 51
formula entity, 54
formula matrix, 53
formula symbol, 54
formula unit, 47, 51, 70
Fourier number (mass transfer), 82
fraction
amount, 48, 49, 97
amount-of-substance, 48, 97, 121, 133
mass, 47, 49, 97, 98
mole, 48, 59, 62, 81, 121
volume, 48, 97, 98
fractional coordinate, 42
fractional population, 38, 39
fractions, 97
franklin, 134, 135, 139, 144
free path
electron mean, 80
mean, $44,65,80,81$
free spectral range, 36
frequency, 13, 29, 34-36, 41, 68, 81, 88, 89, 129 angular, $8,13,34,89,98$
circular, 44
collision, 64, 65
Debye, 43
Larmor, 23
resonance, 29
standardized resonance, 29
transition, 25
frequency factor, 64
frequency shift, 87
frequency standard, 87
frequency unit, $\mathbf{2 5}, 26$
angular, 28
friction factor dynamic, 15
Froude number, 82
fugacity, 58, 74
fugacity coefficient, 58
function
amplitude, 18
atomic-orbital basis, 19, 21
Gibbs, 56
Hamilton, 14
Heaviside, 45, 67, 107
Helmholtz, 56
Lagrange, 14
Legendre, 18
Massieu, 56
Planck, 56
spherical harmonic, 18
time-dependent, 18
work, 43, 80
fundamental physical constant, 9, 95, 96, 111-112, 133
fundamental translation vector, 42
angular, 42
fundamental vibration, 26
fundamental wavenumber vibrational, 26
fusion (subscript), 60
FWHM, 36, 67
g-factor, $23, \mathbf{2 7}, 28, \underline{111}$
Landé, 23, 27, 28, 111
nuclear, 23
gal, 136, 137
gallon (UK), 136
gallon (US), 136
Galvani potential difference, 71, 72
galvanic cell, 73, 75
gamma, 136
gamma function, 107
gap energy
band, 43
gas, 38, 39, 54, 74, 81, 139
ideal, 39, 61, 66
real, 48, 139
van der Waals, 57
gas constant, 45
molar, 45, 111
gas mixture, 48, 61, 88
gas phase, 40, 41, 55, 61
gauss, 141, 142
Gauss law, 146
Gaussian, 139, 141
Gaussian probability distribution, 151, 154
Gaussian system, 41, 133, 135, 143, 144
Gaussian-type orbital, 21
Gaussian unit system, 143
general chemical equation, 53
general chemistry, 47-55
general rules for symbol, 5
generalized coordinate, 13, 14, 45
generalized first-order kinetics, 67
generalized momentum, 14, 45
Gibbs dividing surface, 77, 78
Gibbs energy, 6, 56, 74
partial molar, 57, 71
standard, 71
standard reaction, 58
Gibbs energy of activation
standard, 66
Gibbs function, 56
Gibbs surface, 77, 78
Gibbs surface amount, 78
gibi, 91
giga, 91
gigabinary, 91
glide operation, 44
gon, 136
gradient, 44
electric field, 29, 141
gradient of a scalar field, 107
gradient tensor, 29
grain, 136
gram, 91, 136
grand canonical ensemble, 46
Grashof number (mass transfer), 82
gravitation
Newton constant of, 112
gravitational constant, 14 heliocentric, 92, 94
gray, 89, 139
Greek alphabet, 179
Greek letter, 8, 9, 19, 32, 55
Gregorian year, 137
ground electronic state, 32
ground state, 8, 22, 32, 33, 61
ground-state distance, 27
ground-state label, 33
Grüneisen parameter, 43
GTO, 21
gyromagnetic ratio, 23, 27, 29
proton, 112
shielded proton, $\underline{112}$
half cell, 73, 74
half life, $\mathbf{2 4}, 64,116$
Hall oefficient, 43
Hamilton function, 14
hamiltonian, 18, 31
core, 20
effective, 19
effective vibrational, 26
hyperfine coupling, 27
rotational, 25
hamiltonian operator, see hamiltonian
hard sphere collision model, 64
hard sphere radius, 64
harmonic (vibrational) wavenumber, 25, 26
harmonic approximation
double, 41
Harned cell, 75, 76
Hartmann number, 82
hartree, 9, 132, 137, 145
Hartree energy, 22, 95, 111
Hartree-Fock equation, 21
Hartree-Fock SCF, 20
Hartree-Fock theory, 19
Hartree-Fock-Roothaan SCF, 21
heat, 56, 73, 89
heat capacities
ratio of, 57
heat capacity, 5, 56, 90, 138
molar, 90, 139
specific, 90
heat capacity (constant pressure), 5, 6, 8, 56
specific, $\mathbf{6}, 81$
heat capacity (constant volume), $8,43,55,56$
heat flux, 81
heat flux density, 81, 90
heat flux vector, 44
heat transfer
coefficient of, 81
Heaviside function, 45, 67, 107
hectare, 136
hecto, 91
hectopascal, 48
height, 13
heliocentric gravitational constant, 92, 94
helion, 50, 115
helion magnetic moment shielded, 116
Helmholtz energy, 56, 78
Helmholtz function, 56
henry, 89
Henry's law, 59
Henry's law constant, 58, 59
Hermann-Mauguin symbol, 31, 44
hermitian conjugate, 19, 107
hertz, 6, 88, 89
high energy, 34
high pressure limit, 66
HMO, see Hückel (molecular orbital) theory
horse power
imperial, 138
metric, 138
hot-band transition, 41
hour, 92, 137
Hückel (molecular orbital) theory, 19
Hückel secular determinant, 19
hydrogen-like atom, 23
hydrogen-like wavefunction, 18
hyper-polarizability, 17, 24, 95
hyper-susceptibility, 16
hyperbolic function, 106
hyperfine coupling constant, 27
hyperfine coupling hamiltonian, 27
hyperfine level, 87
ideal (superscript), 60
ideal gas, 39, 61, 66
molar volume of, $\underline{111}$
identity operator, 31
IEC, 6, 91, 92, 136
illuminance, 89
imaginary refractive index, 37, 40
immersion (subscript), 60
impact parameter, 65
impedance, 17, 70, 98 characteristic, $\underline{111}$ complex, 17
imperial horse power, 138
inch, 135,138
incident intensity, 38
incoming particle, 50
indirect mechanism, 68
indirect spin coupling tensor, 28
individual collision, 65
induced emission, 35, 37-39
induced radiative transition, 38
inductance, 17, 89, 142
mutual, 17
self-, 17, 142, 147
induction
magnetic, 17, 27
inertial defect, 25
inexact differential, 56
infinite dilution, 54, 55, 61
infinite dilution (superscript), 60
infinitesimal electromagnetic force, 143
infinitesimal variation, 8
infrared spectra, 40
inner electric potential, 70
inner potential, 71
inner potential difference, 71
integral
coulomb, 19, 20
exchange, 20
inter-electron repulsion, 20
one-electron, 20, 21
overlap, 19
resonance, 19
two-electron, 21
two-electron repulsion, 19, 20
integrated absorption coefficient, 37, 39-41
integrated absorption cross section, 38
integrated cross section, 39
integrated net absorption cross section, 37
integration element, 18
intensity, 34-36, 38
absorption, 38-40
band, 26, 38-40
incident, 38
line, 26, 38-40
luminous, 4, 34, 85, 86, 88
photon, 34
radiant, 34, 35, 88
signal, 29
spectral, 35, 36
transmitted, 38
intensity of electromagnetic radiation, 35
intensive, 6, 81
interaction energy
electrostatic, 43
interaction tensor
dipolar, 28
interatomic equilibrium distance, 27
interatomic (internuclear) distance, 27
inter-electron repulsion integral, 20
interface, 71
interfacial entropy per area, 78
interfacial layer, 77, 78
interfacial tension, 77, 78
internal absorptance, 36
internal coordinate, 27
internal energy, 55, 56
internal energy of activation standard, 65
internal energy of atomization standard, 61
internal vibrational angular momentum, 30
internal vibrational coordinate, 27
international calorie, 137
international ohm
mean, 140
US, 140
international protype of the kilogram, 87
International System of Units (SI), 85
International temperature, 56
international volt
mean, 140
US, 140
intrinsic number density, 44
inverse of a square matrix, 107
inversion operation, 31, 44
inversion operator, 31
ion, 50
ion charge, 73
ion density, 43
ionic activity mean, 70
ionic activity coefficient mean, 70
ionic charge number, 49
ionic concentration mean, 70
ionic conductivity, 54, 73
ionic conductor, 73
ionic molality mean, 70
ionic strength, 59, 70, 76
ionic strength (concentration basis), 59, 70
ionic strength (molality basis), 59, 70
ionization
degree of, 49
ionization energy, 22
acceptor, 43
donor, 43
ionization potential, 22
irradiance, 34, 35, 90 spectral, 35
irrational (ir), see non-rationalized
isentropic compressibility, 56
ISO, $6,11,13,14,16,17,22,25,34,42,45,47,56$, 58, 81, 92, 97, 136
ISO 1000, 7
ISO 31, 7, 48
ISO/IEC 80000, 7
ISO/TC 12, xi
isobaric nuclide, 49
isobars, 49
isoelectric point, 78
isothermal compressibility, 43, 56
isotope, 49, 117, 120
isotope mixture, 88
isotope-isomer, 52
isotopic abundance, 121
isotopic composition, 51, 120
isotopic composition of the elements, 117, 122-128
isotopic nuclide, 49
isotopologues, 51
isotopomers, 51
isotropic medium, 16
ISQ, 4, 16, 143
italic fonts, 7
ITS, 56
IUPAC, ix, xi, 4, 6, 11, 18, 25, 29, 34, 48, 58, 62, 63, lattice wave, 43 77,117 LCAO-MO theory, 21
IUPAP, xi, 11, 13, 14, 16, 18, 22, 25, 34, 42, 45, 47, Legendre function, 18
length, $3,4,6, \mathbf{1 3}, 20,42,45,53,81,85-87,92,94$, lineic force, 144
$95,131,135,136,143-145,147$
absorbing path, 37
characteristic Debye, 78
Debye, 77
Debye screening, 78
diffusion, 43
dipole, 26, 141
electric dipole, 26
equilibrium bond, 96
path, 13, 36, 38
reciprocal unit cell, 42
unit cell, 42
length of arc, 13
level, 45
energy, 38, 39
field, 98, 99
hyperfine, 87
Λ-doubled, 31
macroscopic, 49, 51, 52
microscopic, 49, 50, 52
orbital energy, 19
power, 98, 99
quantum, 46
rotational, 30
level of confidence, 151, $\mathbf{1 5 4}$
level of field quantity, 92
level of power quantity, 92
level width, 24
Levi-Civita symbol, 106
Lewis number, 82
lifetime, 24, 44, 64, 121
average, 64
natural, 66
light, 35,87
speed of, $9,13,16,25,34,43,95, \underline{111}, 143-145$
wavelength of, 38
light gathering power, 35, 36
light second, $\underline{136}$
light source, 38
light transmitted, 37
light year, 136
line intensity, 26, 38-40
line strength, 38, 39
line width, 36
line width at half maximum, 36
linear combination of functions, 21
linear combinations of basis functions, 21
linear decadic absorption coefficient, 36
linear expansion coefficient, 56
linear molecule, 30-32
linear momentum, 95
linear napierian absorption coefficient, 36
linear strain, 15
linear top, 30
lineic, 6
lineshape, 36
linewidth, 36, 67
natural, 66
predissociation, 66
liquid, 16, 27, 38, 40, 41, 54, 73
liquid crystal, 54, 55
liquid junction, 73
liquid junction potential, 72, 74, 76
liquid phase, 41, 55
liquid state, 61
litre, $6,92,136$
litre atmosphere, $\underline{137}$
logarithm
decadic, 63, 98, 99
napierian, 98
logarithmic function, 106
logarithmic quantities, 99
logarithmic quantity, 98
logarithmic ratio, 92
logical operator, 107
longitudinal cavity mode, 36
longitudinal relaxation time, 23
longitudinal spin-lattice relaxation time, 29
Lorentz force, 148
Lorentz gauge, 148
Lorentz local field, 40
Lorentz-Lorenz formula, 40
Lorenz coefficient, 43
Loschmidt constant, see Avogadro constant
loss angle, 17
lumen, 89
luminescence, 36, 37
luminous flux, 89
luminous intensity, $4, \mathbf{3 4}, 85,86,88$
luminous quantity, 34
lux, 89
Mach number, 82
macroscopic level, 49, 51, 52
macroscopic magnetization equilibrium, 28
Madelung constant, 43
magnetic constant, 17, 111, 143
magnetic dipole, 147
magnetic dipole moment, 17, 23, 95, 121, 133, 142
atomic unit of, 95
molecular, 133
magnetic dipole moment per volume, 17
magnetic field, 17, 29, 141
see magnetic flux density, 17
magnetic field strength, 17, 90, 142, 147
magnetic flux, 17, 89, 142
magnetic flux density, 17, 28, 81, 89, 95, 141, 145-147
effective, 29
radiofrequency, 28
static, 28
magnetic induction, 17, 27
magnetic moment, 23, 115, 116
electron, 23, 111
nuclear, 29, 122-128
proton, $\underline{112}$
shielded helion, 116
shielded proton, 112, 116
magnetic permeability, 145
magnetic quantum number, 30
magnetic Reynolds number, 82
magnetic susceptibility, 17, 133, 142, 145, 147
molar, 17, 133, 142
magnetic vector potential, 17, 146, 147
magnetism, 16-17
magnetizability, 23, 95, 142
magnetization, 17, 28, 147
magnetization (volume), 142
magnetogyric ratio, see gyromagnetic ratio
magneton
Bohr, 23, 29, 95, 111, 115, 133, 142
nuclear, 23, 29, 111, 121, 142
mass, $4,6,7,14,18,20,28,45,48,77,81,85-89$, $92-96,111,115,116,133,135,136,143,144$
atomic, 22, 47, 121
average molar, 77
centre of, 31
effective, 43
electron, $9,22,29,94,95,111,136$
mean molar, 47
molar, 47, 54, 117, 133
molecular, 51
neutron, 111
proton, 29, 111
reduced, $8, \mathbf{1 4}, 64,65,95$
relative atomic, 47, 117-120
relative molar, 47
relative molecular, 47
SI base unit of, 91
mass adjusted vibrational coordinate, 27
mass concentration, 38, 48, 97
mass constant
atomic, 22, 47, 111, 117
molar, 47, 117
mass density, $6, \mathbf{1 4}, 38,48,51,54,90,97$
mass distribution, 14
mass excess, 22
mass fraction, 47, 49, 97, 98
mass number, 22, $49,50,120,121$
mass of atom, $\mathbf{2 2}, 47$
mass of entity, 47
mass transfer
Fourier number for, 82
Grashof number for, 82
Nusselt number for, 82
Péclet number for, 82
Stanton number for, 82
steady-state, 72
mass transfer coefficient, 72, 81
mass unit
unified atomic, $9,22,47, \mathbf{9 2}, 94,111,116,117$, 121, 136
massic, 6
massic volume, 6
Massieu function, 56
massless, 70
mathematical constant, $7,103,112$
mathematical function, 103, 105
mathematical operator, 7, 105 symbol of, 7,8
mathematical symbol, 7, 8, 103-108 printing of, 103, 104
matrix, 5, 7, 79, 104, 107
complex conjugate, 107
conservation, 53
density, 46
determinant of a square, 107
formula, 53
inverse of square, 107
rate (coefficient), 66
scattering, 65
stoichiometric number, 53
trace of a square, 107
transpose of, 107
unit, 107
unitary, 65
matrix element, 19, 21, 67, 79, 107
density, 21, 46
Fock operator, 21
overlap, 21
matrix element of operator, 18
matrix equation, 67
matrix for superlattice notation, 80
matrix notation, 33, 79
matrix notation (chemical equation), 53
matrix quantity, 65
maxwell, 142
Maxwell equations, 144, 145, $\underline{147}$
Maxwell relation, 143, 144
Mayan year, 137
mean, 151, 152
standard deviation of the, 151
mean Earth-Sun distance, 92
mean free path, $44, \mathbf{6 5}, 80,81$
mean international ohm, $\underline{140}$
mean international volt, $\underline{140}$
mean ionic activity, 70
mean ionic activity coefficient, 70
mean ionic concentration, 70
mean ionic molality, 70
mean life, 24, 64, 115, 116
mean molar mass, 47
mean molar volume, 47
mean relative speed, 64
mean value, 105
measurand, 153
measure of uncertainty, 153
measured quantity, 151
measurement equation, 153
mebi, 91
mechanics
classical, 14-15
quantum, 18-21
statistical, 66
mechanism
catalytic reaction, 68
chain-reaction, 68
complex, 68
composite, 68
indirect, 68
stepwise, 68
mega, 91
megabinary, 91
megadalton, 94
megaelectronvolt, 92, 116
megahertz, 6
melting (subscript), 60
metallic conductor, 74
metre, $3,6,53,85,86,87, \underline{135}, 143$
cubic, 136
square, 136
metric horse power, 138
metric pound, 136
metric tonne, 136
Michaelis constant, 66, 67
micro, 91
microcanonical ensemble, 46
microfacet, 79
microgram, 8
micromolar, 48
micron, 135
microscopic constant, 87
microscopic level, 49, 50, 52
microscopic quantity, 17
migration velocity, 73
mile, 135
nautical, 92, 135
Miller indices, 44, 79, 80
Miller-index vector, 79
milli, 91
millibar, 48
millilitre, 92
millimetre of mercury, 138
millimicron, $\underline{135}$
millimolar, 48
million
part per, 98
minute, 92, 137
minute (plane angle), 92, $\underline{136}$
mixing angle weak, 24, 111
mixing of fluids (subscript), 60
mixture, 8, 46, 59
gas, 48, 61, 88
isotope, 88
mobility, 43
electric, 73
mobility ratio, 43
modulus
bulk, 15
compression, 15
Coulomb's, 15
shear, 15
Young's, 15
modulus of elasticity, 15
modulus of the Poynting vector, 35
molal solution, 48
molality, 48, 49, 59, 62, 70, 75, 133
mean ionic, 70
standard, 61, 62, 75
molality basis, 75
molar, 6, 47, 48 partial, 57
molar absorption coefficient, 6
molar conductivity, $6,54, \mathbf{7 3}, 90,132$
molar conductivity of an ion, 73
molar decadic absorption coefficient, 36, 37
molar energy, 90, 129, 234
molar enthalpy, 6, 8
standard partial, 57
molar enthalpy of formation standard, 58
molar enthalpy of reaction, 60
molar enthalpy of vaporization, 60
molar entropy, 55, 90, 139
standard partial, 57
molar entropy of reaction, 60
molar excitation energy, 132
molar gas constant, 45, 111
molar Gibbs energy
partial, 6, 57, 71
molar heat capacity, 90, 139
molar magnetic susceptibility, 17, 133, 142
molar mass, 47, 54, 117, 133
average, 77
mean, 47
relative, 47
molar mass constant, 47, 117
molar napierian absorption coefficient, 36
molar optical rotatory power, 37, 38
molar polarizability, 17, 41
complex, 41
molar quantity, 6, $5 \mathbf{5}$
partial, 6, 57
molar refraction, 37
molar refractivity, 37
molar susceptibility non-rationalized, 142
molar volume, $5,6,17,41,47,55,57,90,139$
mean, 47
partial, 57
molar volume of ideal gas, $\underline{111}$
molarity, 48
mole, $4,6,43,53,59,85,86,88,98$
mole fraction, 48, 59, 62, 81, 121
mole fraction (gas), 48
molecular conductivity (of equivalent entities), 73
molecular dipole moment, 26
molecular formula, 51
molecular magnetic dipole moment, 133
molecular mass, 51
relative, 47
molecular momentum vector, 45
molecular orbital, 19-21
occupied, 21
molecular partition function (per volume), 66
molecular partition function (transition state), 66
molecular point group, 32
molecular position vector, 45
molecular quadrupole moment, 24
molecular quantity, 37
molecular spectroscopy, 14
molecular spin orbital, 20
molecular state, 32
molecular velocity vector, 45
molecular weight, 47
molecularity, 68
molecule-fixed coordinate, 31
moment
magnetic, 23, 115, 116
transition, 39
moment of force, $\mathbf{1 4}, 90$
moment of inertia, 14
principal, 25
momentum, 14, 45
angular, 14, 18, 20, 23, 28, 30, 67, 95, 121, 138
generalized, 14, 45
linear, 95
spin angular, 19, 28, 116
momentum operator, 18
momentum transfer, 42, 112
momentum vector molecular, 45
monomeric form, 54
monomolecular reaction, 68
$\overline{\mathrm{MS}}$ scheme, 111
muon, 8, 50, 115
muonium, 50, 116
mutual inductance, 17
myon neutrino, 115
nabla operator, 18, 107
name
chemical-compound, 8
name of a physical quantity, $3, \mathbf{5}, 53$
nano, 91
nanometre, 3, 6
napierian absorbance, 36, 37
napierian absorption coefficient, 36, 38
napierian logarithm, 98
natural lifetime, 66
natural linewidth, 66
nautical mile, 92, 135
Néel temperature, 43
negative electrode, 75
nematic phase, 54
neper, $8, \mathbf{9 2}, 98,99$
Nernst equation, 72, 75
Nernst potential, 72
Nernst slope, 76
net absorption, 38
net absorption coefficient, 37
net absorption cross section, 37
net forward reaction, 52
net integrated absorption band intensity, 39
net reaction, 68
neutrino, $\underline{115}$
electron, 50,115
electron anti, 50
myon, 115
tau, 115
neutron, $8,23,49,50, \underline{115}$
scattering of, 42
neutron mass, 111
neutron number, 22, 24
newton, $87,89,137$
Newton constant of gravitation, $\underline{112}$
NMR, 28, 29
nomenclature, 9
biochemical, 9
inorganic, 9
macromolecular, 9
organic, 9
non-aqueous system, 74
non-rationalized, 145
non-rationalized displacement, 141
non-rationalized emu, 133
non-rationalized esu, 133
non-rationalized molar susceptibility, 142
non-rationalized quantity, 145
non-rationalized system, 133
non-rationalized unit, 129,145
non-SI unit, 129, 135
accepted, 92
normal coordinate, 27
dimensionless, 27
normal distribution, 154
normal mode, 33
normal probability distribution, 151, 153
normal stress, 15
normalization factor, 18, 20, 21
normalized wavefunction, 18
nuclear chemistry, 34, 89, 116
nuclear g-factor, 23
nuclear interaction weak, 24
nuclear magnetic moment, 29, 122-128
nuclear magnetic resonance, 28
nuclear magneton, 23, 29, 111, 121, 142
nuclear orbital angular momentum (rotational), 30
nuclear Overhauser effect, 29
nuclear Overhauser enhancement, 29
nuclear physics, 22, 116
nuclear quadrupole area, 26
nuclear quadrupole coupling constant, 29
nuclear quadrupole interaction energy tensor, 24
nuclear quadrupole moment, $\mathbf{2 4}, 28$
nuclear reaction, 50
nuclear spin, 29
nuclear spin angular momentum, 30
nuclear spin degeneracy, 26
nuclear spin operator, 28
nuclear spin quantum number, 121
nuclear spin-spin coupling, 28
nuclear spin-spin coupling constant reduced, 28
nucleon number, 22, 49
nuclide, 49, 50, 113, 121
isobaric, 49
isotopic, 49
nuclides
properties of, 121-128
null space, 53
number, 8, 13, 24, 63 Alfén, 82
atomic, 22, 23, 49, 50, 117, 121
characteristic, 5
charge, 20, 49-51, 70, 71, 73
collision, 65
complex, 107
Cowling, 82
electron, 52, 71
Euler, 82
Fourier, 82
Froude, 82
Grashof, 82
Hartmann, 82
ionic charge, 49
Knudsen, 82
Lewis, 82
Mach, 82
magnetic Reynolds, 82
mass, 22, 49, 50, 120, 121
neutron, 22, 24
nucleon, 22, 49
Nusselt, 82
oxidation, 50
Péclet, 82
Prandtl, 82
proton, 20, 22, 24, 49, 121
quantum, 21, 27, 28, 30, 32, 33, 51, 67, 103
Rayleigh, 82
Reynolds, 5, $8 \mathbf{2}$
Schmidt, 82
Sherwood, 82
Stanton, 82
stoichiometric, $48,49,52,53,60,61,71,72,74$
Strouhal, 82
symmetry, 46
transport, 73
transport (characteristic), 82
Weber, 82
number concentration, 43, 45, 48, 63, 64
number density, 43-45, 48, 81
intrinsic, 44
specific, 44
number flux density, 81
number matrix
stoichiometric, 53
number of adsorbed molecules, 78
number of anions, 70
number of atoms, $42,50,53$
number of cations, 70
number of collisions total, 65
number of defined events, 67
number of electrons, 19, 20, 71, 72
number of entities, $6, \mathbf{4 5}, 47,89$
number of measurements, 151
number of moles, 4, 53
number of open adiabatic reaction channels, 66
number of particles, 68
number of photons absorbed, 67
number of protons, 121
number of quantum states, 45
number of states, $44, \mathbf{6 6}, 67$
cumulative, 45
number of states (transition state), 66, 67
number of vibrational modes, 44
numbers
printing of, 103
numerical value of a physical quantity, $\mathbf{3}, 133$
Nusselt number (mass transfer), 82
nutation angular frequency, 28
oblate top, 25
occupied molecular orbital, 21
oersted, 142
ohm, 89, 140
mean international, 140
US international, 140
one-electron integral, 20, 21
one-electron orbital, 32
one-electron orbital energy, 20
one-electron wavefunction, 44
on-shell scheme, 111, 112
operator, 18, 96, 103
angular momentum, 19, 28, 30
coulomb, 20, 21
del, 107
density, 46
dipole moment, 35
electron orbital, 25
electron spin, 25, $\mathbf{2 7}$
exchange, 20, 21
expectation value of, 18
Fock, 20, 21
hamiltonian, 18
hermitian conjugate of, 19
identity, 31
inversion, 31
kinetic energy, 18
Laplacian, 107
logical, 107
mathematical, 7, 8, 105
matrix element of, 18
momentum, 18
nabla, 18, 107
nuclear spin, 28
parity, 31
permutation, 31
permutation-inversion, 31
reflection, 31
rotation, 31
rotation-reflection, 31
space-fixed inversion, 31
symmetry, 31
vector, 30
operator inverse, 106
operator symbol, 30
operator symbol (reaction in general), 58
optical rotation, 38
angle of, $\mathbf{3 7}, 38$
optical rotatory power
molar, 37, 38
specific, $\mathbf{3 7}, 38$
optical spectroscopy, 32, 36
orbital
Gaussian-type, 21
molecular, 19-21
molecular spin, 20
Slater-type, 21
orbital angular momentum, 32
orbital energy
one-electron, 20
orbital energy level, 19
order
bond, 19, 21
charge, 19
order (Legendre function), 18
order of reaction, $\mathbf{6 6}, 72$
overall, 63
partial, 63, 64
order of reflection, 42
order parameter, 42
oscillator
damped linear, 8
oscillator strength, 37
osmole, 59
osmotic coefficient, 59
osmotic coefficient (molality basis), 59
osmotic coefficient (mole fraction basis), 59
osmotic pressure, 59
ounce, 136
ounce (avoirdupois), 136
ounce (troy), 136
outer electric potential, 70
outer potential difference, 70
outgoing particle, 50
overall order of reaction, 63
Overhauser effect
nuclear, 29
Overhauser enhancement nuclear, 29
overlap integral, 19
overlap matrix element, 21
overpotential, 72
oxidation number, 50
oxidation rate constant, 72
parity, 31, 32, 121
parity operator, 31
parity violation, 31
parsec, $\underline{136}$
part per billion, 98
part per hundred, 98
part per hundred million, 98
part per million, 98
part per quadrillion, 98
part per thousand, 98
part per trillion, 98
partial molar, 57
partial molar Gibbs energy, 6, 57, 71
partial molar quantity, 6, 57
partial molar volume, 57
partial order of reaction, 63, 64
partial pressure, $5,38,48,63$
partial reaction order, 64
particle, $42,45,54,65,88, \underline{115}$
$\alpha-, 8,50, \underline{115}$
$\beta-, 50, \underline{115}$
incoming, 50
outgoing, 50
particle current, 65
particle current per area, 65
particle flux density, 44
particle position vector, 42
particle spin quantum number, 115
particle symbol, $8,22, \mathbf{5 0}, 113,115$
particle trajectory, 65
particles
properties of, 115-116
partition, 31
partition function, $39,45,46,67$
partition function (per volume), 67
partition function (transition state) molecular, 66
pascal, 89, 138
path length, 13, 36, 38
PDG, 111, 113, 115
pebi, 91
Péclet number (mass transfer), 82
Peltier coefficient, 43
per mille, 98
percent, 97, 121
period, 13
periodic, 13
permeability, $8, \mathbf{1 7}, 81,90$
magnetic, 145
relative, $5, \mathbf{1 7}, 145,147$
permeability of vacuum, see magnetic constant
permille, 97, 98
permittivity, 16, 41, 90
electric, 145
relative, 16, 40, 145, 146
relative complex, 40
permittivity of vacuum, see electric constant
permutation, 31
permutation group, 31
permutation inversion, 31
permutation operator, 31
permutation-inversion operator, 31
peta, 91
petabinary, 91
$\mathrm{pH}, 5,70,75,76$
definition of, 70, $\mathbf{7 5}$
measurement of, 75, 76
quantity, 75
symbol, 70, 75
pH standards, 75
phase
condensed, 40, 41, 48, 54, 58
fluid, 54
nematic, 54
phase of current, 17
phase of potential difference, 17
phase space
volume in, 45
phonon, 44
photo-electrochemical energy conversion, 70
photochemical yield, 66
photochemistry, 34, 35, 63-67
photodissociation, 31
photon, 50, 67, 88, 115
photon absorption
rate of, 67
photon intensity, 34
photon quantity, 34
physical constant
fundamental, $9,95,96,111-112,133$
physical quantity, 3, 4, 8, 85, 92-94, 96, 131, 135, 140, 143
dimensionless, 97
extensive, 81
intensive, 81
name of, $3, \mathbf{5}, 53$
numerical value of, $\mathbf{3}, 133$
product of, 7
quotient of, 7
SI unit for, 85
symbol of, 5, 7-9, 11, 70, 97, 131
table of, 11
unit of, 3, 18, 19
value of, 3, 129
physical quantity as unit, 94
physical quantity in SI unit, 143
pico, 91
picomole, 98
pion, $\underline{115}$
planar conjugated hydrocarbons, 19
Planck constant, $7,9,22,34,95,111$
Planck constant divided by $2 \pi, 22, \mathbf{3 4}, 111,145$
Planck function, 56
plane angle, 13, 38, 89, 92, 136
plane angle (degree), 92
plane angle (minute), 92, 136
plane angle (second), 92, $\underline{136}$
plane of polarization, 38
plane of rotation, 13
plasma physics, 22
point charge, 17
point group, 103
point of zero charge, 78
poise, 138
polar coordinate
spherical, 13, 21
polarizability, 24, 134, 135, 140, 141
complex molar, 41
electric, 95
molar, 17, 41
polarizability of a molecule electric, 24
polarizability volume, 141
polarization, 141
dielectric, 16, 40, 146
electric, 16
volume, 141
Polo-Wilson equation, 41
polymeric form, 54
polytropy, 45
population
average, 46
position vector, 13
molecular, 45
particle, 42
positive electrode, 75
positron, 50, 115
positronium, $\underline{116}$
potential
cell, 16, 71, 89
chemical, 5, 6, 8, 44, 46, 57, 62
electric, 16, 70, 75, 89, 140
electrochemical, 71
electrode, 71, 74, 75
electrokinetic, 73
electromagnetic, 147, 148
electronic, 23, 64
electrostatic, 70, 146
equilibrium, 71, 72, 74
formal, 72
inner, 71
ionization, 22
liquid junction, $72, \mathbf{7 4}, 76$
Nernst, 72
reversible, 72
standard, 74, 75
standard cell, 74
standard chemical, 57, 61, 62
surface, 70
$\zeta-, 73$
potential (of cell reaction)
standard, 71, 74
potential barrier, 94
potential difference, 94
electric, 16, 44, 74
Galvani, 71, 72
inner, 71
outer, 70
Volta, 70
potential difference (electrochemical cell), $\underline{74}$
potential energy, 14, 23
potential energy (dipole), 26
potential energy difference, 14
potential of adiabatic channel, 67
potential of electrochemical cell reaction, 74
pound, 136
pound (avoirdupois), 136
pound (metric), $\underline{136}$
pounds per square inch, 138
power, 14, 22, 98, 138
light gathering, 35, 36
radiant, 34
resolving, 36
thermal, 57, 81
power amplifier, 99
power level, 98, 99
signal, 98
sound, 99
power per area
radiation, 35
power transmitted, 36
Poynting vector, 17, 35, 148
ppb, 98
pph, 98
pphm, 98
ppm, 97, 98
ppq, 98
ppt, 98
Prandtl number, 82
pre-exponential factor, 63, 64
predissociation linewidth, 66
predissociation rate constant, 67
prefix (symbol), 91
pressure, $6, \mathbf{1 4}, 39,48,58,81,89,131,138$
atmospheric, 58
osmotic, 59
partial, $5,38,48,63$
rate of change of, 8
reference, 99
standard, 48, 61, 62, 74
standard state, 62
surface, 77
total, 48
vapor, 60, 131
pressure change
rate of, 63
pressure coefficient, 56
relative, 56
pressure conversion factors, 233
pressure dependence (of the activity), 58
pressure dependence (unimolecular reaction), 64
pressure level
sound, 99
pressure unit, 129
pressure virial coefficient, 57
primary standard (pH), 75, 76
primary symmetry axis, 32
primitive lattice, 44
principal component, 29
principal moment of inertia, 25
principal quantum number, 23
printing of mathematical symbols, 103, 104
printing of numbers, 103
probability, 45, 46, 65, 153, 154
average, 46
Einstein transition, 37, 39
estimated, 154
transition, 65
probability current density, 18
probability density, 18, $\mathbf{1 5 1}$
probability distribution, 151, 154
Gaussian, 151, 154
normal, 151, 153
rectangular, 151, 153
Student- t, 151, 154
triangular, 151
probability flux, 18
process, 60
transport, 63
process symbol, 59
product entity, 53
product of unit, 7
prolate top, 25
propagation of uncertainty, 153
propagation vector, 43
properties of chemical elements, 117-120
properties of nuclides, 121-128
properties of particles, 115-116
proton, $8,23,29,49,50, \underline{115}$
proton charge, 22, 70
proton charge (au), 139
proton gyromagnetic ratio, $\underline{112}$
shielded, $\underline{112}$
proton magnetic moment, $\underline{112}$
shielded, $\underline{112,} 116$
proton mass, 29, 111
proton number, 20, 22, 24, 49, 121
pulsatance, 34
pure phase, $38,59,61$
pure solvent, 132
pure state, 46
pure substance, 56, 61
pure substance (superscript), 60
quadrupole area, $\underline{141}$
quadrupole coupling constant, 29
quadrupole interaction energy tensor, 24 nuclear, 24
quadrupole moment, 121-128
electric, 95, 141
molecular, 24
nuclear, 24, 28
quadrupole moment (of a molecule), 23
quadrupole moment (of a nucleus), 24
quality factor, 36
quanta, 50
quantity
base, 4, 16, 85, 86
derived, 4
dimensionless, 5, 11, 18, 97-99
electromagnetic, 144
extensive, $\mathbf{6}, 57,81$
extensive thermodynamic, 60
luminous, 34
molar, 6, 56
partial molar, 6, 57
photon, 34
physical, see physical quantity
reduced, 96
specific, $\mathbf{6}, 56$
standard, 58
tensor, 14, 15, 28, 104
quantity calculus, $3,129,131-133$
quantity of dimension one, 97
quantity of electricity, 16
quantum chemistry, 18-21, 94
quantum level, 46
quantum mechanics, 18-21
quantum number, $21,27,28, \mathbf{3 0}, 32,33,51,67,103$
angular momentum, 23, 26, 30, 67
azimuthal, 30
component, 30
magnetic, 30
nuclear spin, 121
particle spin, 115
principal, 23
vibrational, 26, 33
quantum yield, $\mathbf{6 6}, 67$
quasi-equilibrium theory, 67
quotient of unit, 7
rad (absorbed dose of radiation), $\underline{139}$
radian, $8,13, \mathbf{8 9}, 98, \underline{136}$
radiance, $34-36$
radiant energy, 34
radiant energy density, 34
spectral, 34, 35
radiant energy per time, 34
radiant excitance, 34, 35
radiant exposure, 35
radiant flux, 89
radiant intensity, 34, 35, 88
radiant power, 34
radiation constant, 36, 112
radiation energy flow
rate of, 148
radiation power per area, 35
radiative transition rate
kinetic, 40
radical, 50
radioactive activity, 139
radioactive decay, 64
radiofrequency (magnetic) flux density, 28
radius, 13, 70
Bohr, 9, 22, 95, 111
hard sphere, 64
rank of tensor, 16
Rankine temperature, $\underline{138}$
Raoult's law, 59
rate, 81
rate (coefficient) matrix, 66
rate coefficient, see rate constant
rate constant, 63-65, 67-69
first-order, 66, 67
fluorescence, 66, 67
oxidation, 72
predissociation, 67
reduction, 72
specific, 66
rate constant of fluorescence, 67
rate constant of unimolecular reaction (high pressure), 64
rate constant of unimolecular reaction (low pressure), 64
rate equation, 67
rate law, $63, \mathbf{6 8}, 69$
rate of change, 35
rate of change of pressure, 8
rate of change of quantity, 63
rate of concentration change, 63
rate of conversion, $\mathbf{6 3}, 67,89$
rate of decay, 36
rate of diffusion, 74
rate of effusion, 81
rate of entropy change, 63
rate of photon absorption, 67
rate of pressure change, 63
rate of radiation energy flow, 148
rate of reaction (amount concentration), 63
rate of reaction (number concentration), 63
ratio circumference to diameter, 112
ratio of heat capacities, 57
rational, 145
rationalized, 145
rationalized unit, 145
Rayleigh number, 82
reactance, 17
reactant entity, 53
reactants
zero-point level, 67
reaction, 52
bimolecular, 68, 69
electrochemical, 71, 72, 74, 75
monomolecular, 68
nuclear, 50
symbol for, 58
termolecular, 68
trimolecular, 68, 69
unimolecular, 68, 69
reaction cross section, 65
reaction enthalpy, 69 standard, 5, 58
reaction entropy
standard, 58
reaction equation, 52, 61, 63, 69
reaction in general (subscript), 58, 60
reaction order, 63, 66, 72 partial, 64
reaction quantity
standard, 60
reaction quotient, $\mathbf{5 8}, 61$
reaction rate, 68, 69
real gas, 48, 139
reciprocal energy parameter, 46
reciprocal lattice vector, $\mathbf{4 2}, 80$
reciprocal substrate basis vector, 80
reciprocal superlattice basis vector, 80
reciprocal unit cell angle, 42
reciprocal unit cell length, 42
reciprocal wavelength, 25, 90
rectangular probability distribution, 151, 153
reduced adsorption, 78
reduced angular momentum, 95
reduced charge, 95
reduced coupling constant, 28
reduced distance, 95
reduced energy, 95
reduced limiting sedimentation coefficient, 78
reduced mass, $8, \mathbf{1 4}, 64,65,95$
reduced nuclear spin-spin coupling constant, 28
reduced quantity, 96
reduced surface excess concentration, 78
reduction rate constant, 72
reference pressure, 99
reference state, 61
reference state (of an element), 62
reflectance, 36
reflected flux, 15
reflection, 36, 37
reflection factor, 36
reflection factor (acoustic), 15
reflection loss, 36
reflection operation, 44
reflection operator, 31
refraction, 41
molar, 37
refraction index, 34
refractive index, 34, 40, 41
complex, 37, 40
imaginary, 37, 40
refractivity
molar, 37
relative activity, 57, 71
relative adsorption, 78
relative atomic mass, $\mathbf{4 7}, 117$
relative atomic mass of the elements, 117-120
relative combined standard uncertainty, 152
relative density, 14
relative elongation, 15
relative molar mass, 47
relative molecular mass, 47
relative permeability, $5, \mathbf{1 7}, 145,147$
relative permittivity, 16, 40, 145, 146 complex, 40
relative pressure coefficient, 56
relative speed
mean, 64
relative standard uncertainty, 152
relative surface excess concentration, 78
relative uncertainty, 97
relative value, 97
relaxation, 28
relaxation time, 13, 23, 29, 43, 64
longitudinal, 23
longitudinal spin-lattice, 29
spin-lattice, 29
spin-spin, 29
transverse, 23
(transverse) spin-spin, 29
rem, $\underline{139}$
repetency, 25, 90, 129, 131
repulsion integral
inter-electron, 20
two-electron, 19, 20
residual resistivity, 43
resistance
electric, 17, 89, 140
thermal, 81
resistivity, 17
residual, 43
resistivity tensor, 43
resolution, 36
resolving power, 36
resonance, 29
electron paramagnetic, 27
electron spin, 27
nuclear magnetic, 28
resonance frequency, 29
standardized, 29
resonance integral, 19
resonance structure, 51, 52
response factor, 76
retarded van der Waals constant, 77
reversible potential, 72
Reynolds number, 5, $8 \mathbf{2}$
magnetic, 82
rhombohedral lattice, 44
Roman fonts, 7
röntgen, 139
röntgen equivalent man, see rem
rotation
specific, 38
rotation of a vector field, 107
rotation operation, 44
rotation operator, 31
rotation-reflection operator, 31
rotational band, 33
rotational constant, 25-27
rotational constant (in frequency), 25
rotational constant (in wavenumber), 25
rotational hamiltonian, 25
rotational level, 30
rotational state, 30, 51
rotational temperature, 46
rotational term, 25
rotational transition, 33
rotatory power
molar optical, 37, 38
specific, 38
specific optical, 37, 38
RRKM, 67
rydberg, 137
Rydberg constant, 22, 111
SACM, 67
salt bridge, 74
scalar product, 107
scattering, 36, 37
elastic, 65
scattering amplitude, 42
scattering angle, 65
scattering factor
atomic, 42
scattering matrix, 65
scattering of neutron, 42
SCF, 20, 21
Schmidt number, 82
Schönflies symbol, 31
screw operation, 44
second, $6,85,86,87,92,98,136,137,143,144$
light, $\underline{136}$
second (of arc), 92, $\underline{136}$
second virial coefficient, 57
second-rank tensor, 5, 16, 17
secondary standard (pH), 76
sedimentation
velocity of, 78
sedimentation coefficient, 77, 78
reduced limiting, 78
self-consistent field theory, 20, 21
self-inductance, 17, 142, 147
semiconductor electrochemistry, 70
semiconductor space-charge theory, 78
SHE, 71, 74
shear modulus, 15
shear strain, 15
shear stress, 15
shear stress tensor, 81
shear viscosity, 81, 90
Sherwood number, 82
shielded helion magnetic moment, 116
shielded proton gyromagnetic ratio, $\underline{112}$
shielded proton magnetic moment, $\underline{112,116}$
shielding constant, 29
shielding parameter, 21
shielding tensor, 29
SI, 4, 85

SI base unit, 4, 85-88, 90, 91
symbol for, 86
SI derived unit, 85, 89-91
SI prefix, 85, 91, 92, 94
SI unit, 96
SI unit system, 143
siemens, 89
sievert, 89, 139
signal amplitude level, 98
signal intensity, 29
signal power level, 98
signal transmission, 98
single-crystal surface, 79
Slater determinant, 20
Slater-type orbital, 21
solid, 27, 28, 38, 40, 54, 79
amorphous, 54, 55
crystalline, 55
solid absorbent, 77
solid angle, 13, 34, 36, 65, 89
solid phase, $55,59,61$
solid state, 42-44, 61
solubility, 48, 49
solubility product, 59
solute, 40, 48, 59, 61, 62, 133
solution, $38,40,48,52,54,57,61,72,74,75,132$, 133
aqueous, $\mathbf{5 4}, 55,57,74,97$
dilute, 58, 97
molal, 48
solution (subscript), 60
solution at infinite dilution aquaeous, 54, 55
solvent, $29,37,48,59, \mathbf{6 1}, 133$
pure, 132
solvent mixture, 76
sound
speed of, 13, 81
sound energy flux, 15
sound power level, 99
sound pressure level, 99
space and time, 13
space charge, 78
space coordinate cartesian, 13, 21
space-fixed cartesian axis, $\mathbf{3 5}, 39$
space-fixed component, $\mathbf{3 0}, 35$
space-fixed coordinate, 31
space-fixed inversion operator, 31
space-fixed origin, 31
specific, 6
specific conductance, 73
specific energy, 90
specific entropy, 90
specific heat capacity, 90
specific heat capacity (constant pressure), 6, 81
specific number density, 44
specific optical rotatory power, 37, 38
specific quantity, 6, 56
specific rate constant, 66
specific rotation, 38
specific rotatory power, 38
specific surface area, 77
specific volume, $\mathbf{6}, 14,90$
spectral absorption, 38
spectral density of vibrational modes, 43
spectral intensity, 35, 36
spectral irradiance, 35
spectral line, 37
spectral radiant energy density, 34, 35
spectroscopic absorption intensity, 40
spectroscopic transition, 33
spectroscopy, 25-33, 36
atomic, 14
atomic absorption, 97
molecular, 14
optical, 32, 36
spin-resonance, 23
spectrum
absorption, 36
speed, 13, 81, 90, 93, 95
average, 45, 81
mean relative, 64
speed distribution function, 45
speed of light, $9,13,16,25,34,43,95,111,143-145$
speed of sound, $\mathbf{1 3}, 81$
spherical harmonic function, 18
spherical polar coordinate, 13, 21
spherical symmetry, 145
spherical top, 30
spin
nuclear, 29
spin angular momentum, 19, 28, 116
spin-lattice relaxation time, 29
longitudinal, 29
spin multiplicity, 32
electron, 32
spin operator
electron, 25, 27
nuclear, 28
spin-orbit coupling constant, 25
spin quantum number
nuclear, 121
spin-resonance spectroscopy, 23
spin-rotation coupling constant, 28
spin-rotation interaction tensor, 28
spin-spin coupling constant
nuclear, 28
reduced nuclear, 28
spin-spin relaxation time, 29
spin statistical weight, 45
spin wavefunction, 19, 29
electron, 19
spontaneous emission, 35, 67
square metre, $\underline{136}$
staggered arrangement, 51
standard
atomic, 137
standard (pH)
primary, 75, 76
secondary, 76
standard acceleration of free fall, 137
standard atmosphere, 62, 111, 138
standard atomic weight, 47, 117-120
standard buffer, 76
standard cell potential, 74
standard chemical potential, 57, 61, 62
standard concentration, 62, 72
standard condition, 61, 71
standard deviation, 103, $\mathbf{1 5 1}$
standard deviation of the mean, 151
standard electrode potential, 71, 74
standard enthalpy of activation, 65
standard enthalpy of combustion, 61
standard enthalpy of formation, 55
standard entropy of activation, 65
standard entropy of formation, 61
standard equilibrium constant, 58, 61
standard Gibbs energy, 71
standard Gibbs energy of activation, 66
standard hydrogen electrode (SHE), 71, 74
standard internal energy of activation, 65
standard (internal) energy of atomization, 61
standard molality, 61, 62, 75
standard molar enthalpy of formation, 58
standard partial molar enthalpy, 57
standard partial molar entropy, 57
standard potential, 74, 75
standard potential (of cell reaction), 71, 74
standard pressure, 48, 61, 62, 74
standard quantity, 58
standard reaction enthalpy, 5, 58
standard reaction entropy, 58
standard reaction Gibbs energy, 58
standard reaction quantity, 60
standard state, 58, 61, 62, 66, 71
biochemical, 62
choice of, 58
standard state (gas phase), 61
standard state (liquid or solid state), 61
standard state pressure, 62
standard state (solute), 61
standard (symbol), 57, 60, 66, 71
standard uncertainty, 103, 151, 152
combined, 152
relative, 152
relative combined, 152
standardized resonance frequency, 29

Stanton number (mass transfer), 82
statcoulomb, 144
state function, see wavefunction
state of aggregation, 52, 54
static magnetic flux density, 28
stationary state, 18
statistical entropy, 46
statistical mechanics, 66
statistical thermodynamics, 45-46
statistical weight, 26, 45
spin, 45
steady-state mass transfer, 72
Stefan-Boltzmann constant, 35, 112
stepped surface, 79
stepwise mechanism, 68
steradian, 13, 88, 89
stereochemical formula, 51, 52
stimulated emission, 35
STO, 21
Stockholm convention, 73
stoichiometric chemical equation, 60, 68, 69
stoichiometric equation, 49, 52, 60, 63, 68, 69
stoichiometric number, $48,49,52, \mathbf{5 3}, 60,61,71,72$, 74
stoichiometric number matrix, 53
stoichiometric reaction equation, 60
stoichiometry, 69
stokes, 138
strain
bulk, 15
linear, 15
shear, 15
volume, 15
stress, 89
normal, 15
shear, 15
stress tensor
shear, 81
stretch-bend interaction, 27
stretching coordinate, 27
Strouhal number, 82
structural arrangement, 51
structural formula, 51
structure factor, 42
Student- t probability distribution, 151, $\mathbf{1 5 4}$
sublimation (subscript), 60
substance concentration, 4, 48
substitution structure distance, 27
substrate basis vector, 79, 80
sum of states, 66
sum over states, see partition function
superlattice basis vector, 80
surface, 79
single-crystal, 79
stepped, 79
surface amount, 77
surface area, 49, 71, 77, 78
specific, 77
surface basis vector, 79
surface charge density, 6, 71
surface chemistry, 77
surface concentration, 48, 63, 77
surface coverage, $\mathbf{7 7}, 80$
surface density, 14
surface density of charge, 16
surface electric potential, 70
surface excess, 77, 78
surface excess amount, $\mathbf{7 7}, 78$
surface excess concentration, 77
surface layer, 77
surface potential, 70
surface pressure, 77
surface structure, 79-80
surface tension, 14, 56, 77, 78, 81, 90
susceptance, 17
susceptibility
electric, 16, 145, 146
magnetic, 17, 133, 142, 145, 147
molar magnetic, 17, 133, 142
svedberg, 137
symbol
fonts for, 7
general rules for, 5
Hermann-Mauguin, 31, 44
mathematical, 7, 8, 103-108
Schönflies, 31
symbol of
angular momentum operator, 30
atomic unit, 94-96
base quantity, 4
chemical element, $8,9,49,50,113,117-120$
chemical thermodynamics, 56-62
crystal lattice, 44
decimal (sub)multiple, 91
dimension, 4
directions in crystal, 44
excitation, 50
mathematical operator, 7, 8
particle, $8,22,50,113,115$
physical or chemical process, 59-61
physical quantity, 5, 7-9, 11, 70, 97, 131
planes in crystals, 44
prefix, 91
reaction, 58, 60
SI base unit, 86
SI derived unit, 89-91
standard state, 57, 60, 66, 71
surface structure, 80
symmetry operator, 31
symmetry species, 103
term, 32
unit, 3, 4-6, 83, 92
symbolic notation (chemical equation), 53
symmetric group, 31
symmetric reduction, 25
symmetric top, 30, 33
oblate, 30
prolate, 30
symmetry, $8,16,24,31$
permutation-inversion, 31
spherical, 145
symmetry axis, 30
symmetry coordinate, 27
symmetry factor, 72
symmetry number, 46
symmetry operation, 31, 44
symmetry operator, 31
symmetry species, 32
label for, 31
symbol for, 103
system
Gaussian, 41, 133, 135, 143, 144
system of atomic units, 145
Tafel slope, 72
tau neutrino, 115
tebi, 91
telecommunications, 98
temperature, $6,35,38,39,41,56,61-64,87,129$, 133
Celsius, 38, 46, 56, 89, 111, $\underline{138}$
centigrade, 56
characteristic, 46
characteristic (Weiss), 43
Curie, 43
Debye, 43, 46, 80
Einstein, 46
Fahrenheit, 138
International, 56
Néel, 43
Rankine, 138
rotational, 46
thermodynamic, 4, 56, 81, 85-87, 89, 138
vibrational, 46
Weiss, 43
temperature dependence (unimolecular reaction), 64
tension
electric, 16, 89, 140
film, 77
interfacial, 77, 78
surface, 14, 56, 77, 78, 81, 90
tensor, $\mathbf{5}, 7,8,17,23,24,28,44$
conductivity, 43
electric field gradient, 24
field gradient, 29
gradient, 29
indirect spin coupling, 28
quadrupole interaction energy, 24
rank of, 16
resistivity, 43
second-rank, 5, 16, 17, 104
shear stress, 81
shielding, 29
spin-rotation interaction, 28
thermal conductivity, 43
tensor quantity, 14, 15, 28, 104
tera, 91
terabinary, 91
term, 34
electronic, 25
rotational, 25
total, 25
vibrational, 25
term formula
vibrational, 26
term symbol, 32, 117-120
electronic, 51
term symbol (atomic state), 32
term symbol (molecular state), 32
term value, 25
termolecular reaction, 68
tesla, 89, 141
thermal averaging, 42
thermal conductance, 81
thermal conductivity, 81, 90
thermal conductivity tensor, 43
thermal current density, 44
thermal diffusion coefficient, 81
thermal diffusivity, 81
thermal equilibrium, 39
thermal expansion coefficient, 57
thermal power, 57, 81
thermal resistance, 81
thermochemical calorie, 58, 137
thermodynamic equilibrium constant, 58
thermodynamic temperature, $4, \mathbf{5 6}, 81,85-87,89$, 138
thermodynamics
chemical, 56-62
statistical, 45-46
thermoelectric force, 43, 44
thickness, 13, 77
diffusion layer, 72
film, 77
thickness of layer, 77
third virial coefficient, 57
Thomson coefficient, 43
three-body collision, 65
threshold energy, 64, 67
throughput, 35
time, $4,8,13,81,85-87,92,95,98,135,137,143$, 144
au of, 137
correlation, 29
decay, 64
longitudinal relaxation, 23
relaxation, $13,23,29,43,64$
transverse relaxation, 23
time constant, 13
time-dependent function, 18
time dimension (NMR), 29
time integral, 14
time integral of fluence rate, 35
time integral of irradiance, 35
time interval, 35,64
characteristic, 13
tonne, 92
tonne (metric), $\underline{136}$
top
asymmetric, 30, 31, 33
linear, 30
oblate, 25
prolate, 25
spherical, 30
symmetric, 30, 33
torque, 14
Torr, 81, 131, 138, 233
torr, 131, 138
total angular momentum, 32
total cross section, 65
total electronic energy, 20, 21
total energy, 65
total excess, 78
total pressure, 48
total surface excess concentration, 77
total term, 25
total wavefunction, 20
trace of a square matrix, 107
transfer coefficient
anodic, 72
cathodic, 72
electrochemical, 72
mass, 72, 81
transition, 33, 38, 39, 41
electronic, 37
hot-band, 41
rotational, 33
spectroscopic, 33
vibrational, 33
vibronic, 33
transition between phases (subscript), 60
transition dipole moment (molecule), 26
transition frequency, 25
transition moment, 39
transition probability, 65
Einstein, 37, 39
transition rate
kinetic radiative, 40
transition state, 64
density of states, 66
(molecular) partition function, 66
number of states, $\mathbf{6 6}, 67$
partition function, 67
zero-point level, 67
transition state (superscript), 60
transition state theory, 65-67
transition wavelength, 37
transition wavenumber, 25
translation vector
(angular) fundamental, 42
translational collision energy, 65
transmission, 40
transmission coefficient, 66
transmission factor, 36
transmission factor (acoustic), 15
transmittance, 36
transmitted flux, 15
transmitted intensity, 38
transport (characteristic) number, 82
transport number, 73
transport process, 63
transport properties, 81-82
transpose of matrix, 107
transverse relaxation time, 23
(transverse) spin-spin relaxation time, 29
triangular probability distribution, 151
trigonometric function, 105
trillion, 98
trimolecular reaction, 68, 69
triple point (subscript), 60
triton, 50, 115, 116
tropical year, 137
troy, 136
two-electron integral, 21
two-electron repulsion integral, 19, $\mathbf{2 0}$
type A evaluation, 152
type B evaluation, 152, 153
uncertainty, 75, 76, 103, 149-154
expanded, 151-153
relative, 97
standard, 103, 151, 152
thermodynamic data, 62
uncertainty budget, 149, 152
uncorrelated measurements, 153
unified atomic mass unit, $9,22,47, \mathbf{9 2}, 94, \underline{111}, 116$, 117, 121, 136
unimolecular reaction, 68, 69
Unit, see enzyme unit
unit
angular frequency, 28
astronomical, 9, 92, 94, 136
atomic, $4,18,20,22,24,26, \mathbf{9 4}, 95,96,129,132$, 135, 143-145
base, $34,85-89,93,135,143,144$
CGS, 96, 135-138
choice of, 3
coherent, 93
decimal multiple of, 6, 85, 91
decimal submultiple of, $6,85,91$
electromagnetic, 129, 144
electrostatic, 144
energy, 129
energy-related, 129
entropy, 139
enzyme, 89
frequency, 25, 26
non-rationalized, 129, 145
pressure, 129
product of, 7
quotient of, 7
rationalized, 145
SI base, 4, 85-88, 90, 91
SI derived, 85, 89-91
symbol for, 3, 4-6, 83, 92
unit cell angle, 42
unit cell length, 42
unit matrix, 107
unit of physical quantity, $\mathbf{3}, 18,19$
unit step function, 107
unit system
electromagnetic, 143
electrostatic, 143
emu, 143
esu, 143
Gaussian, 143
SI, 143
unit vector, 13
unitary matrix, 65
US international ohm, $\underline{140}$
US international volt, 140
valence electrons, 52
value of physical quantity, $\mathbf{3}, 129$
van der Waals coefficient, 57
van der Waals constant, 77
retarded, 77
van der Waals equation of state, 57
van der Waals gas, 57
van der Waals-Hamaker constant, 77
vapor, 54
vapor pressure, 60, 131
vaporization (subscript), 60
variance, 151
vector, $5,7,13,16,104,107$
dipole, 17
dipole moment, 16
fundamental translation, 42
lattice, 42
Miller-index, 79
position, 13
Poynting, 17, 35, 148
substrate basis, 79, 80
superlattice basis, 80
surface basis, 79
unit, 13
vector operator, 30
vector potential
magnetic, 17, 146, 147
vector product, 107
velocity, 13, 90, 148
angular, 13, 89, 90
electron, 44
migration, 73
velocity distribution function, 45
velocity of sedimentation, 78
velocity vector
molecular, 45
vibration
fundamental, 26
vibrational angular momentum internal, 30
vibrational anharmonicity constant, 25
vibrational coordinate
dimensionless, 27
internal, 27
mass adjusted, 27
symmetry, 27
vibrational degeneracy, 26
vibrational displacement, 27
vibrational force constant, 27
vibrational fundamental wavenumber, 26
vibrational ground state, 26
vibrational hamiltonian
effective, 26
vibrational modes, 25
number of, 44
spectral density of, 43
vibrational normal coordinate, 27
vibrational quantum number, 26, 33
vibrational state, 33, 51
vibrational symmetry coordinate, 27
vibrational temperature, 46
vibrational term, 25
vibrational term formula, 26
vibrational transition, 33
vibronic transition, 33
virial coefficient, 57
viscosity, 15, 81
bulk, 81
dynamic, 15, 90, 138
kinematic, 15, 90, 138
shear, 81, 90
vitreous substance, 54
volt, 89, 94, 134, 140
mean international, $\underline{140}$
US international, $\underline{140}$
Volta potential difference, 70
volume, $6,13,63,81,90,92,136$
enplethic, 6
massic, 6
mean molar, 47
molar, $5,6,17,41,47,55,57,90,139$
molar (ideal gas), 111
partial molar, 57
polarizability, $\underline{141}$
specific, 6, 14, 90
volume fraction, 48, 97,98
volume in phase space, 45
volume magnetization, 142
volume of activation, 65
volume polarization, 141
volume strain, 15
volumic, 6
W-boson, 111, 115
Wang asymmetry parameter, 25
watt, $88, \mathbf{8 9}, 138$
wave equations, 148
wave vector
angular, 43
wavefunction, 18
electron, 18
hydrogen-like, 18
normalized, 18
one-electron, 44
spin, 19, 29
total, 20
wavelength, $3,34-36,42,44,131$
Debye cut-off, 43
reciprocal, 25, 90
transition, 37
wavelength of light, 38
wavenumber, 25, 27, 34-36, 39, 41, 90, 129, 131
Debye, 43
harmonic (vibrational), 25, 26
transition, 25
vibrational fundamental, 26
wavenumber (in a medium), 34
wavenumber (in vacuum), 34
weak mixing angle, 24, 111
weak nuclear interaction, 24
weber, 89, 142
Weber number, 82
weight, 14
atomic, 47, 117-120
molecular, 47
spin statistical, 45
statistical, 26, 45
Weinberg parameter, 111
Weiss temperature, 43
Wood label (notation), 79
work, 14, 56, 70, 89
work function, 43, 80
electron, 43
work function change, 80
x unit, $\underline{135}$
yard, 135
year, 24,137
Gregorian, 137
Julian, 136, 137
light, 136
Mayan, 137
tropical, 137
yield, 97
photochemical, 66
quantum, 66, 67
yobi, 91
yocto, 91
yotta, 91
yottabinary, 91
Young's modulus, 15
Z-boson, 111, 115
zebi, 91
zepto, 91
zero current, 71
zero matrix, 53
zero-point average distance, 27
zero-point level (reactants), 67
zero-point level (transition state), 67
ζ-potential, 73
zetta, 91
zettabinary, 91

NOTES

NOTES

PRESSURE CONVERSION FACTORS

	Pa	kPa	bar	atm	Torr	psi
1 Pa	$=1$	$=10^{-3}$	$=10^{-5}$	$\approx 9.86923 \times 10^{-6}$	$\approx 7.50062 \times 10^{-3}$	$\approx 1.45038 \times 10^{-4}$
1 kPa	$=10^{3}$	$=1$	$=10^{-2}$	$\approx 9.86923 \times 10^{-3}$	≈ 7.50062	≈ 0.145038
1 bar	$=10^{5}$	$=10^{2}$	$=1$	≈ 0.986923	≈ 750.062	≈ 14.5038
1 atm	$=101325$	$=101.325$	$=1.01325$	$=1$	≈ 14.6959	
1 Torr	≈ 133.322	≈ 0.133322	$\approx 1.33322 \times 10^{-3}$	$\approx 1.31579 \times 10^{-3}$	$=1$	$\approx 1.93368 \times 10^{-2}$
1 psi	≈ 6894.76	≈ 6.89476	$\approx 6.89476 \times 10^{-2}$	$\approx 6.80460 \times 10^{-2}$	≈ 51.71494	1

Examples of the use of this table: 1 bar $\approx 0.986923 \mathrm{~atm}$
1 Torr $\approx 133.322 \mathrm{~Pa}$
Note: $1 \mathrm{mmHg}=1$ Torr, to better than 2×10^{-7} Torr, see Section 7.2, p. 138.

-wo Lggli ［еэ！шәчэош．ләчұ	$=\frac{C{\text {I-I }} \mathrm{IOU}_{\varepsilon z 0 \mathrm{~L}} \times}{}$ 8！̣ әq ұои Keu ұn ио！̣！！иyәр $К q$ ұวセ	$\left(_{\text {I－IOU }} \int_{\varepsilon} 0\right.$ 	！！s．əлиоо әЧL ：○ך	u！sұueqsuos ачд 	иоху рәи！̣яqо иәәq adde s！，to 〔o7 8u！p	у әqqeł s！̣ł u！sə sәı．ıoз КГәұеш！хо	лиоә әчł јо ：əq૧е －（89•d＇9L ә ！иеәu se реә		wo 07 I－IOU［ ${ }_{\text {I－IOU }}$ Cy O7 $\Lambda^{\text {® }}$ O7 ${ }_{\text {I－}}$ zHN of sn әчұ јo səןdu ־ ио！̣әәа әәs） ous $=\mathrm{oqu} \hat{K}$	
I	$\varepsilon_{8}-0 \pm \times 20 \% ~ 2866^{\circ} \mathrm{I}$		${ }_{9-01 \times 9}$		¢－0I $\times 0 ¢ 908 \varepsilon^{\circ} \mathrm{I}$	${ }_{\ddagger} 01 \times \mp 99880{ }^{\circ} \mathrm{Z}$	9 9E0 969＊0	三	Y I	：L
68LZ．809	I	Đ8I＇t			$\varepsilon_{-01 \times \mp 69 ~}^{\text {¢ }}$ ¢ 6.9		Lgctinte	三	${ }_{\text {L－Ioun［eoy I }}$	
\％727．07I	L $900687^{\circ} 0$	1			$\varepsilon^{\text {－}} 0$ I $\times 689099 \mathrm{~L}$	${ }_{9} 0 \tau \times 690909 \cdot 7$	LT E69．c8	－	${ }_{\text {I－［oum }}$ ¢ ${ }^{\text {Y I }}$	
${ }_{9} 00 \times \angle E L \angle S T L^{\circ}$	9609.279	009｀gz97	I	88 Lİでくを	玌 698．	${ }_{6} 01 \times 789629.9$	9＊TLT 6Lz	三	${ }^{4}$ G I	
$\ddagger 0 \mathrm{~L} \times$ LST 091．	¢9 090 \＆z	¢¢ 987．96		L	9 LLZ 091．0	${ }_{8} 0$ L $\times 686$ Lİて	Cty c908	三	$\Lambda^{\partial} \mathrm{I}$	：
$\ddagger 0$ ¢ \times ¢96 そヶでL	9786¢をI	で12＇709	\＆ILE 6 67\％ 0	0โ¢ Lキで9	I	${ }_{6} 0 \mathrm{~L} \times 06 \mathrm{~L} 60 \mathrm{c}^{\circ} \mathrm{L}$	LİLtE 09	三	$\mathrm{re}^{\text {I }}$	
	${ }_{8}-0\left[\times 920 \angle 8 C^{\circ} 6\right.$	$\angle-0 \pm \times$ ¢LE $066 \cdot 8$		${ }_{6}-0 \mathrm{~L} \times 299$ cetit	ог－0โ $\times 690979.9$		$\times \ldots 998 ¢$	三	${ }^{\text {z }} \mathrm{HN}$ I	：
9 L 2885° L		$\varepsilon_{8}-0 \pm \times 99 \mathrm{796}$［L			я－0I $\times 9 \pm \pm 986{ }^{\text {L }}$		）I	三	${ }_{\text {¢ }}$－${ }^{\text {U }}$ I	$:$
H	${ }_{\text {I－IOU［ }}$［esy		${ }^{4}$	$\Lambda^{\text {® }}$	${ }^{\text {e }}$	${ }^{\text {zHN }}$	T－шว			
						ィ Кวuәnbə．！	гәquпиәлем			

SצOLOVA NOIS甘GANOD ХఅษGN＇TVOIצGNON

IUPAC Periodic Table of the Elements
18

10
$\mathbf{N e}$
neon
$20.1797(6)$
18
$\mathbf{A r}$
argon
$39.948(1)$
36
$\mathbf{K r}$
krypton
$83.98(2)$
$\mathbf{X 4}$
$\mathbf{X e}$
xenon
$131.293(6)$
86
$\mathbf{R n}$

 \circ | \mathbf{O} |
| :---: |
| \mathbf{O} |
| oxygen |
| $5.9994(3)$ |$|$ Po :

 $\stackrel{1}{\rightleftharpoons}$
오N年 $-\infty$ cadmium
chat 11 (8)
13
18

$$
\begin{array}{|c|}
\hline 2 \\
\mathrm{He}
\end{array}
$$

[^0]: ${ }^{1}$ The MCO report can be found at ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf.
 ${ }^{2}$ Impulse (change of momentum) means here the time-integral of the force.

[^1]: ${ }^{1}$ The symbol $[Q]$ was formerly used for dimension of Q, but this symbol is used and preferred for unit of Q.
 ${ }^{2}$ The Clinical Chemistry Division of IUPAC recommended that "amount-of-substance concentration" be abbreviated "substance concentration" [14].

[^2]: ${ }^{1}$ An exception is made for certain characteristic numbers or "dimensionless quantities" used in the study of transport processes for which the internationally agreed symbols consist of two letters (see Section 2.15.1, p. 82).

 Example Reynolds number, Re; another example is pH (see Sections 2.13 and 2.13 .1 (viii), p. 70 and 75).

 When such symbols appear as factors in a product, they should be separated from other symbols by a space, multiplication sign, or parentheses.

[^3]: ${ }^{2}$ However, only the lower case 1 is used by ISO and the International Electrotechnical Commission (IEC).

[^4]: (1) The SI unit of this quantity is $\mathrm{m} \mathrm{mol}^{-1}$. In the Gaussian system the definition of C_{j} as $C_{j}=\int_{\text {band } j} \widetilde{\nu} \alpha_{\mathrm{m}}^{\prime \prime}(\widetilde{\nu}) \mathrm{d} \widetilde{\nu}$ is often adopted, with unit $\mathrm{cm} \mathrm{mol}^{-1}$.

[^5]: ${ }^{1}$ These are in accordance with the "Stockholm Convention" of 1953 [103].

[^6]: ${ }^{1}$ The kilogram is the only base unit which is not defined by a measurement on a system defined by natural microscopic constants or an experimental setup derived from such a system. Rather it is defined by a human artefact (the international prototype of the kilogram). Therefore, alternative definitions of the kilogram are under current discussion [127-129].
 ${ }^{2}$ See also Section 2.11, note 2, p. 56.

[^7]: (Notes continued)
 (8) The sign of the magnetic moment is defined with respect to the direction of the spin angular momentum.
 (9) μ^{-}and μ^{+}have the same mass but opposite charge and opposite magnetic moment.
 (10) The shielded proton magnetic moment, $\mu_{\mathrm{p}}{ }^{\prime}$, is given by $\mu_{\mathrm{p}}{ }^{\prime} / \mu_{\mathrm{N}}=2.792775598(30)\left(\mathrm{H}_{2} \mathrm{O}\right.$, sphere, $25^{\circ} \mathrm{C}$).
 (11) The half life, $t_{1 / 2}$, of the triton is about 12.3 a (see Section 2.12 , p. 64) with a corresponding mean life, τ, of 17.7 a .
 (12) This is the shielded helion magnetic moment, $\mu_{\mathrm{h}}{ }^{\prime}$, given as $\mu_{\mathrm{h}}{ }^{\prime} / \mu_{\mathrm{N}}$ (gas, sphere, $25^{\circ} \mathrm{C}$).

[^8]: ${ }^{1}$ A more appropriate name for "quantity calculus" might be "algebra of quantities", because the principles of algebra rather than calculus (in the sense of differential and integral calculus) are involved.

[^9]: ${ }^{2}$ We use b_{B} because of the possible confusion of notation when using m_{B} to denote molality, and m_{S} to denote the mass of S . However, the symbol m_{B} is frequently used to denote molality (see Section 2.10, note 14, p. 48).

[^10]: ${ }^{1}$ The name "franklin", symbol Fr, for the esu of charge was suggested by Guggenheim [155], although it has not been widely adopted. The name "statcoulomb" has also been used for the esu of charge.

